A high-affinity folate binding protein in human semen

1991 ◽  
Vol 11 (5) ◽  
pp. 237-242 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen

The presence of a folate binding protein of high-affinity type (affinity constant 3.1010M−1, maximum folate binding 1.4 nM) in human semen was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Radioligand dissociation from the binding protein was slow at pH 7.4, but rapid at pH 3.5. By use of rabbit antibodies against 25 kDa human milk folate binding protein we determined the concentration of folate binding protein in 16 speciments of human semen in an enzyme-linked immunosorbent assay. The concentration of immunoreactive folate binding protein was independent of the number of spermatozoa in individual specimens. Gel filtration showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one of 100 kDa and a minor one of 25 kDa.

1990 ◽  
Vol 10 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen

The presence of a folate binding protein of high-affinity type (affinity constant 5 · 109M−1, maximum folate binding 3 nM) in human amniotic fluid was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Dissociation of3H-folate from the binding protein was slow at pH 7.4 but rapid at pH 3.5. By use of rabbit antibodies against low molecular weight folate binding protein from human milk we determined the concentration of folate binding protein in 5 amniotic fluids (range 1.5–2.3 nM) in an Enzyme-Linked Immunosorbent Assay (ELISA). ultrogel AcA 44 chromatography of amniotic fluid showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one (Mr~25 000) and a minor one (Mr~100 000).


2005 ◽  
Vol 28 (5) ◽  
pp. 267-274 ◽  
Author(s):  
JOHAN MALM ◽  
HENRIK BIRN ◽  
BIIRGITTA FROHM ◽  
STEEN-INGEMANN HANSEN ◽  
MIMI HOIER-MADSEN ◽  
...  

1993 ◽  
Vol 13 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen

Binding of 3H-folate in Triton X-100 solubilized human prostate homogenate was of a high-affinity type and displayed apparent positive cooperativity typical of specific folate binding. Radioligand dissociation was slow at pH 7.4, but rapid at pH 3.5. Gel chromatography reveled two major folate binding proteins (Mr≈100 and 25kDa), but only one single band (Mr ≈ 65–70 kDa) was detectable on SDS-PAGE and immunoblotting with rabbit-anti human milk folate binding protein. Concentration of folate binding protein in prostate homogenate expressed as maximum 3H-folate binding was 1.10 nmol/g protein, and the cross-reactivity with rabbit-anti human milk folate binding protein serum was 15% as determined by an enzyme-linked immunosorbent assay (median values; n = 6).


1989 ◽  
Vol 9 (1) ◽  
pp. 93-97 ◽  
Author(s):  
Steen Ingemann Hansen ◽  
Jan Holm ◽  
Mimi Høier-Madsen

High-affinity binding of [3H]folate in human urine displayed characteristics, e.g. apparent positive cooperativity, which are typical of specific folate binding. By means of a two-site enzyme-linked immunosorbent assay (ELISA) with rabbit antibodies against the low molecular weight folate binding protein from human milk, we measured folate binding protein concentrations in the range of 0.51 to 4.13 nM in urine samples from 16 apparently healthy individuals. Ultrogel AcA 44 chromatography of the urine showed that immunoreactive and radioligand bound folate binding protein coeluted in one large peak (Mr∼25,000).


1980 ◽  
Vol 40 (6) ◽  
pp. 523-527 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Jörgen Lyngbye

1985 ◽  
Vol 31 (8) ◽  
pp. 1314-1316 ◽  
Author(s):  
M Cochran ◽  
D Patterson ◽  
S Neoh ◽  
B Stevens ◽  
R Mazzachi

Abstract Gel filtration of plasma from hemodialysis patients, with use of reagents and apparatus with carefully minimized background Al concentrations, reproducibly showed a single peak for Al, corresponding exactly to the elution position of transferrin. The Al/transferrin molar ratio in adjacent fractions was constant (mean 0.126, SE 0.006) in replicate experiments. In contrast, the association of Al with albumin varied. Using both equilibrium dialysis and gel-filtration techniques, in the presence and absence of calcium or phosphate, we could demonstrate no significant binding of Al by human albumin at Al concentrations of 1 to 12 mumol/L. We saw no Al peak in pooled, concentrated, low-molecular-mass fractions of plasma gel-filtered on Sephadex G-50. Evidently, transferrin is the sole Al-binding protein in plasma of hemodialysis patients.


1985 ◽  
Vol 5 (8) ◽  
pp. 683-688 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
J⊘rgen Lyngbye

High-affinity binding of [3H]folate to supernatant from homogenized human leukocytes containing large amounts of binding protein displayed apparent positive cooperativity. The DEAE-Sepharose® CL-6B chromatographic profile of the supernatant at pH 6.3 contained a major peak of folate binding (Mr approx. 25 000) in the front effluent and a smaller more acidic peak (Mr approx. 25 000) that emerged after a rise in NaCl from 30 mmol/l to 1 mol/l. Triton X-100 solubilized ceil sediment from the leukocyte homogenate contained some high-affinity folate binding activity (Mr approx 25 000), typically 5–10% of the total binding activity.


1999 ◽  
Vol 19 (6) ◽  
pp. 571-580 ◽  
Author(s):  
Jan Holm ◽  
Steen Ingemann Hansen ◽  
Mimi Høier-Madsen ◽  
Thomas Broe Christensen ◽  
Carl W. Nichols

We have characterized the folate receptor in normal and malignant tissue from male gonads. Radioligand binding displayed characteristics typical of other folate receptors. Those included a high-affinity type of binding (K = 1010 M−1), apparent positive cooperativity changing into non-cooperativity at low receptor concentrations, a tendency to increased binding affinity with decreasing receptor concentrations, a slow dissociation at pH 7.4 becoming rapid at pH 3.5 and inhibition by folates, in particular oxidized forms. The gel filtration profile of Triton X-100 solubilized tissue contained a 25 and 100 kDa peak of radioligand-receptor. The latter peak could represent receptor equipped with a hydrophobic membrane anchor that inserts into Triton X-100 micelles. The concentration of radiolabelled receptor ranged from 0.41 nmol/g protein to 1.68 nmol/g protein in specimens of normal testicular tissue from patients with prostatic carcinomas and from 1.54 nmol/g protein to 3.82 nmol/g protein in testicular tissue from young individuals. Compared to normal testicular tissue the concentration of receptor in seminoma tissue was low (0.38–1.27 nmol/g protein) but showed a higher degree of immunoreactivity in the presence of antibodies against human milk folate binding protein as evidenced by ELISA and immunohistochemistry data. Hence a folate receptor isoform homologous to human milk folate binding protein is apparently expressed in seminomas where the total expression of receptor, however, seems to be lower than in normal testicles.


1996 ◽  
Vol 270 (1) ◽  
pp. R105-R110 ◽  
Author(s):  
K. Sasaki ◽  
M. Natsuhori ◽  
M. Shimoda ◽  
Y. Saima ◽  
E. Kokue

Stability and protein-binding properties of tetrahydrofolate (THF) in pig plasma were studied in vitro. THF in plasma was stable for more than 120 min when it existed in a bound form, whereas THF both in plasma ultrafiltrate and in plasma ultrafiltrate plus porcine albumin was degraded rapidly and disappeared soon after its addition. These results suggest that high-affinity folate-binding protein (HFBP) is related to the stability of THF. THF-protein binding kinetic analysis showed that porcine plasma had HFBP and low-affinity binding protein (albumin) for THF. Dissociation constant and maximal binding capacity of HFBP were calculated to be 0.4 and 70 nM, respectively, indicating that > 98% of endogenous plasma THF existed in bound form with HFBP. Porcine albumin was not essentially a protein that binds and protects endogenous THF from degradation. We conclude that most endogenous THF binds to HFBP and only the unbound form of THF is rapidly degraded in pig plasma. HFBP protects THF from degradation and allows THF to exist stably in pig plasma. In addition, HFBP may govern the species specificity of plasma folate distribution in pigs.


1997 ◽  
Vol 64 (2) ◽  
pp. 239-252 ◽  
Author(s):  
KARIN WIGERTZ ◽  
ULLA K. SVENSSON ◽  
MARGARETHA JÄGERSTAD

Recent findings suggest a protective role for folates in the reduction of neural tube defects and possibly also coronary heart disease and cancer. Consequently, an increase in the daily intake of folates is warranted, which emphasizes the need for quantitative as well as qualitative measurements of dietary folates. Milk plays an important part in the food chain in many Western countries today. Several studies suggest that folate-binding proteins might have an impact on folate absorption and therefore their concentrations are also important. The mean concentration of the predominant form of folate, 5-methyltetrahydrofolate (5-CH3THF), was determined using HPLC in thirteen selected dairy products; skim milk powder, two pasteurized milks, UHT milk, two fermented milks, three whey products and four different cheeses. All results were corrected for recovery by spiking the samples with 5-CH3THF. Effects of storage of dairy products on 5-CH3THF concentrations were also investigated; generally small and insignificant fluctuations were found, except for hard cheese, in which 5-CH3THF decreased significantly. There was a significant seasonal variation in the folate concentration of pasteurized milk which peaked in the summer months. The concentrations of folate-binding protein in skim milk powder and pasteurized milk analysed using an enzyme-linked immunosorbent assay were similar. UHT milk and fermented milk, both of which are processed at temperatures >90°C, contained significantly lower concentrations of folate-binding protein.


Sign in / Sign up

Export Citation Format

Share Document