Equations for the computer calculation of the partial water vapor pressure and of the dew point of humid air

1991 ◽  
Vol 27 (5) ◽  
pp. 254-256 ◽  
Author(s):  
V. E. Filimonov
1982 ◽  
Vol 52 (6) ◽  
pp. 1658-1660 ◽  
Author(s):  
H. Graichen ◽  
R. Rascati ◽  
R. R. Gonzalez

A device is described for measuring dew-point temperature and water vapor pressure in small confined areas. The method is based on the deposition of water on a cooled surface when at dew-point temperature. A small Peltier module lowers the temperature of two electrically conductive plates. At dew point the insulating gap separating the plates becomes conductive as water vapor condenses. Sensors based on this principle can be made small and rugged and can be used for measuring directly the local water vapor pressure. They may be installed within a conventional ventilated sweat capsule used for measuring water vapor loss from the skin surface. A novel application is the measurement of the water vapor pressure gradients across layers of clothing worn by an exercising subject.


1964 ◽  
Vol 42 (4) ◽  
pp. 792-801 ◽  
Author(s):  
H. G. McAdie

Kinetics of the two-stage dehydration of CaSO4•2H2O have been examined under controlled water vapor pressures up to one atmosphere. For both stages water vapor initially accelerated the rate of dehydration and subsequently retarded it. Separate, temperature-dependent water vapor pressures were noted above which each stage could be suppressed.The hemihydrate was clearly defined either as a change in the rate of weight loss during dehydration or, at higher water vapor pressures, as a fixed composition. The heat of solution of the hemihydrate increased linearly with the partial water vapor pressure present during its formation, but was independent of the formation temperature over the range studied. Activation energy and pre-exponential factor for the dihydrate → hemihydrate process also increased linearly with water vapor pressure. Hemihydrates produced at the extremes of water vapor pressure corresponded to the α- and β-modifications, as defined thermodynamically, and the production of a hemihydrate series with properties varying linearly from one extreme to the other is discussed.


2014 ◽  
Vol 931-932 ◽  
pp. 703-708
Author(s):  
Prawit Uang-Aree ◽  
Sununtha Kingpaiboon ◽  
Kulyakorn Khuanmar

This article presents a statistical correlation between GPS precipitable water vapor and meteorological data, i.e., surface temperature, air pressure, relative humidity, dew point temperature, and water vapor pressure by using linear regression. The data, recorded over a 4-year period, was used as an estimation of missing GPS precipitable water vapor data from discontinuous recordings. A multiple linear regression equation showed a correlation among zenith wet delay (ZWD), water vapor pressure (e) and surface temperature (T) was ZWD(e,T) = 17.4952e-0.8281T-93.164, with a coefficient of determination (R2) of 0.725, a mean absolute error of 8.71 mm, a root mean square error of 10.39 mm, and a mean absolute percentage error of 18.63%. The equation obtained can be used to estimate GPS precipitable water vapor data which is missing from recordings due to accident or technological error.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 335-348
Author(s):  
YOUNES KHOSRAVI ◽  
HASAN LASHKARI ◽  
HOSEIN ASAKEREH

Recognitionanddetectionofclimaticparameters inhave animportant role inclimate change monitoring. In this study, the analysis of oneofthe most importantparameters, water vapor pressure (WVP), was investigated. For this purpose, two non-parametric techniques, Mann-Kendall and Sen's Slope Estimator, were used to analyze the WVP trend and to determine the magnitude of the trends, respectively. To analyze these tests, ground station observations [10 stations for period of 44 years (1967-2010)] and gridded data [pixels with the dimension of 9 × 9 km over a 30-year period (1981-2010)] in South and SouthwestofIran were used. By programming in MATLAB software, the monthly, seasonal and annual WVP time series were extracted and MK and Sen's slope estimator tests were done. The results of monthly MK test on ground station observations showed that the significant downward trends are more considerable than significant upward trends. It also showed that the WVP highest frequency was more in warm months, April to September and the highest frequency of significant trends slope was in February and May. The spatial distribution of MK test of monthly gridded WVP time series showed that the upward trends were detected mostly in western zone and near the Persian Gulf in August. On the other hand, the downward trends through months. The maximum and minimum values of positive trends slope occurred in warm months and cold months, respectively. The analysis of the MK test of the annual WVP time series indicated the upward significant trends in the southeast and southwest zones of study area.  


Sign in / Sign up

Export Citation Format

Share Document