scholarly journals Exact theory of the (Einstein) gravitational field in an arbitrary background space-time

1984 ◽  
Vol 94 (3) ◽  
pp. 379-396 ◽  
Author(s):  
L. P. Grishchuk ◽  
A. N. Petrov ◽  
A. D. Popova
1988 ◽  
Vol 03 (13) ◽  
pp. 1227-1229 ◽  
Author(s):  
A. WIDOM ◽  
C.C. CHEN

Experimental probes of the anomalous magnetic moment of the muon, which are sufficiently sensitive to probe electro-weak unification contributions to (g−2), are also sufficiently sensitive to test an interesting feature of general relativity. The gravitational field of the earth produces a background space-time metric which will influence (g−2) measurements.


2016 ◽  
Vol 31 (36) ◽  
pp. 1650191 ◽  
Author(s):  
M. de Montigny ◽  
M. Hosseinpour ◽  
H. Hassanabadi

In this paper, we study the covariant Duffin-Kemmer-Petiau (DKP) equation in the cosmic-string space-time and consider the interaction of a DKP field with the gravitational field produced by topological defects in order to examine the influence of topology on this system. We solve the spin-zero DKP oscillator in the presence of the Cornell interaction with a rotating coordinate system in an exact analytical manner for nodeless and one-node states by proposing a proper ansatz solution.


2007 ◽  
Vol 16 (06) ◽  
pp. 1027-1041 ◽  
Author(s):  
EDUARDO A. NOTTE-CUELLO ◽  
WALDYR A. RODRIGUES

Using the Clifford bundle formalism, a Lagrangian theory of the Yang–Mills type (with a gauge fixing term and an auto interacting term) for the gravitational field in Minkowski space–time is presented. It is shown how two simple hypotheses permit the interpretation of the formalism in terms of effective Lorentzian or teleparallel geometries. In the case of a Lorentzian geometry interpretation of the theory, the field equations are shown to be equivalent to Einstein's equations.


2010 ◽  
Vol 19 (14) ◽  
pp. 2353-2359 ◽  
Author(s):  
F. I. COOPERSTOCK ◽  
M. J. DUPRE

In this essay, we introduce a new approach to energy–momentum in general relativity. Space–time, as opposed to space, is recognized as the necessary arena for its examination, leading us to define new extended space–time energy and momentum constructs. From local and global considerations, we conclude that the Ricci tensor is the required element for a localized expression of energy–momentum to include the gravitational field. We present and rationalize a fully invariant extended expression for space–time energy, guided by Tolman's well-known energy integral for an arbitrary bounded stationary system. This raises fundamental issues which we discuss. The role of the observer emerges naturally and we are led to an extension of the uncertainty principle to general relativity, of particular relevance to ultra-strong gravity.


2016 ◽  
Vol 8 (5) ◽  
pp. 44
Author(s):  
Edward A. Walker

<p class="1Body">A summarization of the Alcubierre metric is given in comparison to a new metric that has been formulated based on the theoretical assertion of a recently published paper entitled “gravitational space-time curve generation via accelerated particles”. The new metric mathematically describes a warp field where particle accelerators can theoretically generate gravitational space-time curves that compress or contract a volume of space-time toward a hypothetical vehicle traveling at a sub-light velocity contingent upon the amount of voltage generated. Einstein’s field equations are derived based on the new metric to show its compatibility to general relativity. The “time slowing” effects of relativistic gravitational time dilation inherent to the gravitational field generated by the particle accelerators is mathematically shown to be counteracted by a gravitational equilibrium point between an arrangement of two equal magnitude particle accelerators. The gravitational equilibrium point produces a volume of flat or linear space-time to which the hypothetical vehicle can traverse the region of contracted space-time without experiencing time slippage. The theoretical warp field possessing these attributes is referred to as the two gravity source warp field which is mathematically described by the new metric.</p>


1972 ◽  
Vol 44 ◽  
pp. 313-313
Author(s):  
J. L. Sěrsic

The explosive events going on in the central parts of some galaxies are related to a very high mass concentration. As an explosion is actually a drastic rearrangement of the concerned masses with energy release, the binding energy of the central core will change and, correspondingly, its effective gravitational mass. A test particle far from the nuclear region, although within the galaxy, will be moving accordingly in a variable-mass Newtonian gravitational field.On the other hand the observations suggest that explosions in galaxies have axial symmetry, so we are concerned with the global properties of the motion of a particle in a variable mass axisymmetric gravitational field. In order to get rid of the mass variation a space-time conformal transformation is made, which, after imposing some not very restrictive conditions, leads to a conservative potential in the new variables. This new potential has additional terms due to the elimination of the variable mass. The equations of motion in the new variables provide the motion of the test particle relative to an expanding or contracting background which depends on the choice of the transformation and the law of the mass variability. The problem is, at this point, formally similar to Hill's. It is possible to write an equation for the relative energy (a generalization of Jacobi's integral) and also to define surfaces of zero relative velocity for the infinitesimal particle. The general topological properties of these surfaces require singular points along the symmetry axis (analogous to the collinear Eulerian points) and also a dense set in a circumference on a plane perpendicular to the symmetry axis (analogous to the Lagrangian points). The latter one is the main feature characterizing the topology of the zero relative velocity surfaces. Even when we lift some of the restrictive conditions, the Lagrangian ring preserves its properties, as for example, the one of being the only region where zero-velocity curves and equi-potentials coincide when the configuration evolves in time (in the transformed space-time).It is easy to understand that the topology of the surfaces is kept when we reverse the transformation and go back to physical space-time. If the dust, gas or stars in the system has definite upper limits for its Jacobian constants, spatial segregation of them will arise, as is the case in radio-galaxies such as NGC 5128, NGC 1316, etc. where ringlike dust structures are observed.


1996 ◽  
Vol 11 (18) ◽  
pp. 3247-3255 ◽  
Author(s):  
P.S. WESSON ◽  
J. PONCE DE LEON ◽  
H. LIU ◽  
B. MASHHOON ◽  
D. KALLIGAS ◽  
...  

We unify the gravitational field with its source by considering a new type of 5D manifold in which space and time are augmented by an extra dimension which induces 4D matter. The classical tests of relativity are satisfied, and for solitons we obtain new effects which can be tested astrophysically. The canonical cosmological models are in agreement with observations, and we gain new insight into the nature of the big bang. Our inference is that the world may be pure geometry in 5D.


Sign in / Sign up

Export Citation Format

Share Document