Dynamic adjustment of supply under Buyers' forced substitution

1985 ◽  
Vol 45 (4) ◽  
pp. 357-372
Author(s):  
A. Simonovits
Keyword(s):  
Author(s):  
Weidong Qiu ◽  
Xinyi Cai ◽  
Mengke Li ◽  
Liangying Wang ◽  
Yanmei He ◽  
...  

Dynamic adjustment of emission behaviours by controlling the extent of twisted intramolecular charge transfer character in excited state.


2021 ◽  
Vol 13 (3) ◽  
pp. 1115
Author(s):  
Shufan Zhu ◽  
Kefan Xie ◽  
Ping Gui

Incorporating the impact of the COVID-19 pandemic on the mask supply chain into our framework and taking mask output as a state variable, our study introduces the differential game to study the long-term dynamic cooperation of a two-echelon supply chain composed of the supplier and the manufacturer under government subsidies. The study elaborates that government subsidies can provide more effective incentives for supply chain members to cooperate in the production of masks compared with the situation of no government subsidies. A relatively low wholesale price can effectively increase the profits of supply chain members and the supply chain system. The joint contract of two-way cost-sharing contract and transfer payment contract can promote production technology investment efforts of the supply chain members, the optimum trajectory of mask production, and total profit to reach the best state as the centralized decision scenario within a certain range. Meanwhile, it is determined that the profits of supply chain members in the joint contract can be Pareto improvement compared with decentralized decision scenario. With the increase of production technology investment cost coefficients and output self-decay rate, mask outputs have shown a downward trend in the joint contract decision model. On the contrary, mask outputs would rise with growing sensitivity of mask output to production technology investment effort and increasing sensitivity of mask demand to mask output.


2013 ◽  
Vol 859 ◽  
pp. 577-581
Author(s):  
Hui Xia Li ◽  
Yun Can Xue ◽  
Jian Qiang Zhang ◽  
Qi Wen Yang

To overcome the shortcomings of precocity and being easily trapped into local optimum of the standard quantum genetic algorithm (QGA) , Information Technology in An Improved Quantum Genetic Algorithm based on dynamic adjustment of the quantum rotation angle of quantum gate (DAAQGA) was proposed. Mutation operation using the quantum not-gate is also introduced to enhance the diversity of population. Chaos search are also introduced into the modified algorithm to improve the search accuracy. Simulation experiments have been carried and the results show that the improved algorithm has excellent performance both in the preventing premature ability and in the search accuracy.


2017 ◽  
Vol 19 (6) ◽  
pp. 884-906 ◽  
Author(s):  
Viktoria C. E. Langer ◽  
Wolfgang Maennig ◽  
Felix Richter

The awarding of the Olympic Games to a certain city or the announcement of a city’s Olympic bid may be considered as a news shock that affects agents’ market expectations. A news shock implies potential impacts on the dynamic adjustment process that change not only the volatility but also the long-run steady-state levels of endogenous economic variables. In this study, we contribute to and extend previous researchers’ attempts to empirically test for the Olympic Games as a news shock by implementing full structural models and by matching Olympic hosts and bidders to structurally similar countries.


1997 ◽  
Vol 12 (3) ◽  
pp. 221-237 ◽  
Author(s):  
FRANK ASCHE

2021 ◽  
Vol 11 (11) ◽  
pp. 4734
Author(s):  
Ľuboslav Straka ◽  
Ivan Čorný

Although WEDM is one of the most precise finishing technologies, deviations from the required geometric shapes and surface roughness occur in the production of parts with rotary surfaces. Even though these shortcomings have only a minimal impact on planar cuts, the production of circular profiles is a different problem. One of the factors causing this poor quality is the vibration of the wire electrode. With appropriate vibration adjustment, it would be possible to achieve significant improvements of the eroded area quality, both in terms of geometric accuracy and in terms of surface roughness. This would significantly increase quality, enabling WEDM technology to compete with other technologies in terms of economic efficiency. Therefore, the proposed solution aims to provide a partial adjustment to the wire tool electrode vibrations, based on their sensing by the means of acoustic emissions or a laser beam, with subsequent dynamic adjustment of the actual technological parameter values. This way, the given solution will increase the production accuracy of circular holes, increase productivity, and ultimately provide an overall increase in the economic efficiency of the WEDM process. The article also presents the scheme of a control algorithm for monitoring and subsequent adjustments of the vibrations of the wire tool electrode during the electroerosion process in order to minimize geometric deviations of circularity, cylindricity and roughness of the machined surface.


Author(s):  
Neel J. Parikh ◽  
Peter Rogge ◽  
Kenneth Luebbert

Coal-fired units are increasingly expected to operate at varying loads while simultaneously dealing with various operational influences as well as fuel variations. Maintaining unit load availability while managing adverse effects of various operational issues such as, flue gas temperature excursions at the SCR inlet, high steam temperatures and the like presents significant challenges. Dynamic adjustment of sootblowing activities and different operational parameters is required to effectively control slagging, fouling and achieve reliability in unit operation. Closed-loop optimizers aim to reduce ongoing manual adjustments by control operators and provide consistency in unit operation. Such optimizers are typically computer software-based and work by interfacing an algorithmic and/or artificial intelligence based decision making system to plant control system [1]. KCP&L is in the process of implementing Siemens SPPA-P3000 combustion and sootblowing optimizers at several Units. The Sootblowing Optimizer solution determines the need for sootblowing based on dynamic plant operating conditions, equipment availability and plant operational drivers. The system then generates sootblower activation signals for propagation in a closed-loop manner to the existing sootblower control system at ‘optimal’ times. SPPA-P3000 Sootblowing Optimizer has been successfully installed at Hawthorn Unit 5, a 594-MW, wall-fired boiler, firing 100 percent Powder River Basin coal. This paper discusses implementation approach as well as operational experience with the Sootblowing Optimizer and presents longer-term operational trends showing unit load sustainability and heat rate improvement.


2017 ◽  
Vol 261 ◽  
pp. 83-93 ◽  
Author(s):  
Yongjiao Sun ◽  
Yuangen Chen ◽  
Ye Yuan ◽  
Guoren Wang

Sign in / Sign up

Export Citation Format

Share Document