Effect of residual stress on the cold-resistance and endurance of welded joints

1989 ◽  
Vol 21 (7) ◽  
pp. 891-896
Author(s):  
V. P. Larionov ◽  
V. G. Petushkov ◽  
G. P. Yakovlev
2021 ◽  
Vol 111 ◽  
pp. 102673
Author(s):  
Liangbi Li ◽  
Jingxi Zhang ◽  
Yiwen Zhang ◽  
Deqin Zhu ◽  
Zhengquan Wan ◽  
...  

Author(s):  
Dean Deng ◽  
Kazuo Ogawa ◽  
Nobuyoshi Yanagida ◽  
Koichi Saito

Recent discoveries of stress corrosion cracking (SCC) at nickel-based metals in pressurized water reactors (PWRs) and boiling water reactors (BWRs) have raised concerns about safety and integrity of plant components. It has been recognized that welding residual stress is an important factor causing the issue of SCC in a weldment. In this study, both numerical simulation technology and experimental method were employed to investigate the characteristics of welding residual stress distribution in several typical welded joints, which are used in nuclear power plants. These joints include a thick plate butt-welded Alloy 600 joint, a dissimilar metal J-groove set-in joint and a dissimilar metal girth-butt joint. First of all, numerical simulation technology was used to predict welding residual stresses in these three joints, and the influence of heat source model on welding residual stress was examined. Meanwhile, the influence of other thermal processes such as cladding, buttering and heat treatment on the final residual stresses in the dissimilar metal girth-butt joint was also clarified. Secondly, we also measured the residual stresses in three corresponding mock-ups. Finally, the comparisons of the simulation results and the measured data have shed light on how to effectively simulate welding residual stress in these typical joints.


1999 ◽  
Vol 65 (633) ◽  
pp. 989-995 ◽  
Author(s):  
Masahito MOCHIZUKI ◽  
Toshio HATTORI ◽  
Munetoshi ZEN ◽  
Junji YAMAMOTO ◽  
Kimiaki NAKAKADO

2014 ◽  
Vol 496-500 ◽  
pp. 2444-2451
Author(s):  
Qiang Zeng ◽  
Dai Qin Tao ◽  
Zheng Zhou ◽  
Xiao Qian Li

Basing on a giant truss, this passage did a macro assessment of welding resjdual stress by the changes of material hardness which was measured by brinell hardness method after welding. This experiment measured about 1728 measurement points on 72 nodes. Statistical analysis of the hardness data shows that hardness of base metal decreases in the area of HAZ ,and plastic of welded joints increases.


Author(s):  
Nur Syahroni ◽  
Stig Berge

Residual stress may have a significant effect on the fatigue strength of welded joints. As a non-fluctuating stress, it has an effect similar to that of the mean stress. Recently the International Association of Ship Classification Societies (IACS) has issued Common Structural Rules (CSR) for respectively tankers (IACS 2006a) and bulk carriers (IACS 2006b). The effect of mean stress in fatigue design is taken into account in both sets of rules. However, the treatment is quite different, in particular with regard to residual stress and shakedown effects. In the present paper a comparative study of fatigue design procedures of the IACS rules is reported, with emphasis on residual stress effects. Testing was carried out with longitudinal attachment welds in the as-welded condition. The initial residual stress was measured by a sectioning method using strain gages. Hot spot stress was determined experimentally by strain gauges and numerically by finite element analysis using different types of elements. Fatigue testing was carried out and SN-curves were plotted according to the relevant stress as specified by the rules. In order to investigate the shake-down effect of residual stress, testing was performed for several pre-load conditions which could be taken to represent maximum load levels in a load history. The aim of the study is to contribute towards better understanding of the effect of residual stress and shakedown on fatigue strength of welded joints.


Author(s):  
Tao Mo ◽  
Jingqing Chen ◽  
Pengju Zhang ◽  
Wenqian Bai ◽  
Xiao Mu ◽  
...  

Ultrasonic impact treatment (UIT) is an effective method that has been widely applied in welding structure to improve the fatigue properties of materials. It combines mechanical impact and ultrasonic vibration to produce plastic deformation on the weld joints surface, which introduces beneficial compressive residual stress distribution. To evaluate the effect of UIT technology on alleviating the residual stress of welded joints, a novel numerical analysis method based on the inherent strain theory is proposed to simulate the stress superposition of welding and subsequent UIT process of 304 stainless steel. Meanwhile, the experiment according to the process was carried out to verify the simulation of residual stress values before and after UIT. By the results, optimization of UIT application could effectively reduce the residual stress concentration after welding process. Residual tensile stress of welded joints after UIT is transformed into residual compressive stress. UIT formed a residual compressive stress layer with a thickness of about 0.13 mm on the plate. The numerical simulation results are consistent with the experimental results. The work in this paper could provide theoretical basis and technical support for the reasonable evaluation of the ultrasonic impact on residual stress elimination and mechanical properties improvement of welded joints.


Sign in / Sign up

Export Citation Format

Share Document