Selection of variant neuroblastoma cell line which has lost cell surface expression of antigen detected by monoclonal antibody PI153/3

1985 ◽  
Vol 11 (5) ◽  
pp. 517-522 ◽  
Author(s):  
Josef Bukovsky ◽  
Audrey Evans ◽  
Margaret Tartaglione ◽  
Roger H. Kennett
2008 ◽  
Vol 295 (1) ◽  
pp. G16-G26 ◽  
Author(s):  
Mubeen Jafri ◽  
Bryan Donnelly ◽  
Steven Allen ◽  
Alex Bondoc ◽  
Monica McNeal ◽  
...  

Inoculation of BALB/c mice with rhesus rotavirus (RRV) in the newborn period results in biliary epithelial cell (cholangiocyte) infection and the murine model of biliary atresia. Rotavirus infection of a cell requires attachment, which is governed in part by cell-surface expression of integrins such as α2β1. We hypothesized that cholangiocytes were susceptible to RRV infection because they express α2β1. RRV attachment and replication was measured in cell lines derived from cholangiocytes and hepatocytes. Flow cytometry was performed on these cell lines to determine whether α2β1 was present. Cholangiocytes were blocked with natural ligands, a monoclonal antibody, or small interfering RNA against the α2-subunit and were infected with RRV. The extrahepatic biliary tract of newborn mice was screened for the expression of the α2β1-integrin. Newborn mice were pretreated with a monoclonal antibody against the α2-subunit and were inoculated with RRV. RRV attached and replicated significantly better in cholangiocytes than in hepatocytes. Cholangiocytes, but not hepatocytes, expressed α2β1 in vitro and in vivo. Blocking assays led to a significant reduction in attachment and yield of virus in RRV-infected cholangiocytes. Pretreatment of newborn pups with an anti-α2 monoclonal antibody reduced the ability of RRV to cause biliary atresia in mice. Cell-surface expression of the α2β1-integrin plays a role in the mechanism that confers cholangiocyte susceptibility to RRV infection.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 3052-3055 ◽  
Author(s):  
Lyn R. Ambrose ◽  
Anne-Sophie Morel ◽  
Anthony N. Warrens

Neutropenia is a recognized adverse event in patients treated with the humanized anti-CD52 monoclonal antibody alemtuzumab. However, as it is widely believed that neutrophils do not express CD52, the etiology of alemtuzumab-associated neutropenia is unclear. We have found that neutrophils express both mRNA coding for CD52 and the protein itself on the cell surface. We confirmed cell-surface expression using 3 different anti-CD52 antibodies, and note that neutrophils express lower levels of CD52 than lymphocytes and eosinophils. Further, incubation of alemtuzumab with neutrophils results in dose-dependent, complement-mediated lysis in the presence of both heterologous and autologous complement. These data offer an explanation for the etiology of alemtuzumab-associated neutropenia. In a climate of increased use of alemtuzumab in leukemia and other disease states, as well as in transplantation, these data highlight the need for increased vigilance of emerging neutropenia in patients treated with alemtuzumab.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2181-2181
Author(s):  
Marloes R. Tijssen ◽  
Franca di Summa ◽  
Sonja Van den Oudenrijn ◽  
Carlijn Voermans ◽  
C.Ellen Van der Schoot ◽  
...  

Abstract Congenital amegakaryocytic thrombocytopenia (CAMT) is a rare disorder that presents with severe thrombocytopenia and absence of megakaryocytes in the bone marrow. The disease may develop into bone marrow aplasia. In vitro, CD34-positive hematopoietic progenitor cells from CAMT patients did not show any megakaryocyte formation in a Tpo-driven expansion culture. We and others found genetic defects in the gene encoding the Tpo receptor, c-mpl (Van den Oudenrijn et al., Br J Haematol.2002, 117: 390–398 and Ballmaier et al., Ann N Y Acad Sci.2003, 996: 17–25). In our patients, we found four mutations that predicted amino-acid substitutions, of which three in the extracellular domain; Arg102Pro, Pro136His and Arg257Cys, and one in the intracellular signaling domain (Pro635Leu), which may result in either defective Tpo-binding and/or signaling. To investigate this, we transfected full-length Mpl (wt and mutants) into the erythroleukemic cell line K562 and truncated Mpl (encompassing the extracellular domain; wt and mutants) into Baby Hamster Kidney (BHK) cells. In the K562 cells, the mRNA level (RQ-PCR) of the Pro136His mutant was severely decreased compared to the wt transfectant, while the mRNA level of the other mutants was comparable to that of wt. On Western blot, wt Mpl migrated as two, presumably differently glycosylated, bands of 75 kD and 72 kD. The mutants showed an altered migration pattern, which might result from differences in glycosylation. With the Pro635Leu mutant lower signals were obtained when equal amounts of total protein were loaded. Since the Mpl mRNA level was comparable to that of wt, this suggests a higher level of protein degradation. Upon transfection of the Arg102Pro and the Arg257Cys mutants in BHK cells, we observed that these mutants did not gain endo-H resistency, which suggests an aberrant processing of these mutant Mpls through the Golgi apparatus and retention in the ER. However, in cell fractionation experiments with surface-biotinylated K562 cells, biotinylated wt Mpl and mutant Mpl (except Pro136His) could be detected. Apparently, in K562 cells, the amino-acid substitutions do not impair membrane expression completely. To examine whether the mutant receptors were still able to signal after Tpo incubation, K562 cells were serum-starved and subsequently stimulated with 50 ng/ml rhTpo for 5 to 30 minutes. All mutants, including Pro136His, showed increased ERK phosphorylation after 5 minutes. To summarize, the Pro136His mutant is hardly expressed in the K562 expression model, presumably because of instability of the mRNA, but is still able to induce signaling. In contrast to the results obtained in the BHK model, the Arg102Pro and Arg257Cys mutants, showed cell-surface expression in the K562 cell line. The obtained cell-surface expression in the K562 model may have been significantly increased compared to the in vivo situation on hematopoietic stem cells, because of artificially induced efficient expression. Finally, with a super-physiological concentration of rhTpo, we obtained evidence that all Mpl mutants were able to signal upon Tpo binding. Whether impaired signaling by the Mpl mutants in the presence of physiological levels of Tpo may contribute to the development of CAMT, will be investigated.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1049-1049
Author(s):  
Shoshana Levy ◽  
Chiung-Chi Kuo ◽  
Yael Sagi ◽  
Homer Chen ◽  
Neta Kela-Madar ◽  
...  

Abstract Abstract 1049 Introduction: A 6-year-old girl, who was diagnosed with a primary antibody deficiency, had B cells lacking surface CD19. However, both her CD19 alleles were normal and the impairment was actually caused by a homozygous exon splice site mutation in CD81 (1). The patient's B cells also lacked surface CD81 and produced an immature glycosylated CD19 protein that was retained intracellularly. Interestingly, this human deficiency differed from that of CD81 knockout mice as the latter still express a low level of CD19 on their B cells. Methods: We used an EBV-transformed B cell line from this patient to better understand i) the difference between the human and mouse CD81 deficiencies and ii) how CD81 controls the trafficking of CD19 to the cell surface. We reasoned that the truncated human CD81 mutant (CD81mut) protein might be expressed intracellularly. Indeed, whereas most anti-CD81 mAbs did not recognize CD81mut, we identified one that bound the mutated form and used it in this study. We also expressed the human CD81mut in a CD81-deficient mouse B cell line to determine if it could negatively regulate CD19 surface expression. Results: We show that the CD81mut protein is indeed expressed intracellularly in the patient's EBV-transformed B cells. We then used a proximity ligation assay to demonstrate that the truncated CD81mut protein interacts intracellularly with CD19. However, this interaction with the CD81mut protein abrogated carbohydrate maturation and the trafficking of CD19 to cell surface. We therefore expressed the CD81mut in CD81KO mouse B cells, which still express low levels of surface CD19, and found that it did not exert a dominant negative effect on CD19 surface expression. Finally, we used this reconstitution system to identify specific CD81 domains that restored carbohydrate maturation and cell surface expression of the CD19 molecule in the patient's B cells. Conclusion: This specific case of antibody deficiency was manifested because of lack of surface expression of CD19, an important B cell signaling molecule. However, the maturation of CD19 and its trafficking to the cell surface require the presence of specific domains of the tetraspanin CD81 molecule. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Andrea De Lerma Barbaro ◽  
Giovanna Tosi ◽  
Maria Teresa Valle ◽  
Anna Maria Megiovanni ◽  
Silvia Sartoris ◽  
...  

2009 ◽  
Vol 343 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Paul W. Price ◽  
Elizabeth C. McKinney ◽  
Youliang Wang ◽  
Loren E. Sasser ◽  
Muthugapatti K. Kandasamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document