Impact of flow cytometry on predicting recurrence and survival in breast cancer patients

1985 ◽  
Vol 5 (2) ◽  
pp. 117-128 ◽  
Author(s):  
William L McGuire ◽  
John S Meyer ◽  
Barthel Barlogie ◽  
Timothy E Kute
Cancer ◽  
1990 ◽  
Vol 66 (8) ◽  
pp. 1810-1816 ◽  
Author(s):  
T. E. Kute ◽  
H. B. Muss ◽  
M. R. Cooper ◽  
L. D. Case ◽  
D. Buss ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2504
Author(s):  
Liubov A. Tashireva ◽  
Olga E. Savelieva ◽  
Evgeniya S. Grigoryeva ◽  
Yuri V. Nikitin ◽  
Evgeny V. Denisov ◽  
...  

To date, there is indisputable evidence of significant CTC heterogeneity in carcinomas, in particular breast cancer. The heterogeneity of CTCs is manifested in the key characteristics of tumor cells related to metastatic progression – stemness and epithelial–mesenchymal (EMT) plasticity. It is still not clear what markers can characterize the phenomenon of EMT plasticity in the range from epithelial to mesenchymal phenotypes. In this article we examine the manifestations of EMT plasticity in the CTCs in breast cancer. The prospective study included 39 patients with invasive carcinoma of no special type. CTC phenotypes were determined by flow cytometry before any type of treatment. EMT features of CTC were assessed using antibodies against CD45, CD326 (EpCam), CD325 (N-cadherin), CK7, Snail, and Vimentin. Circulating tumor cells in breast cancer are characterized by pronounced heterogeneity of EMT manifestations. The results of the study indicate that the majority of heterogeneous CTC phenotypes (22 out of 24 detectable) exhibit epithelial–mesenchymal plasticity. The variability of EMT manifestations does not prevent intravasation. Co-expression of EpCAM and CK7, regardless of the variant of co-expression of Snail, N-cadherin, and Vimentin, are associated with a low number of CTCs. Intrapersonal heterogeneity is manifested by the detection of several CTC phenotypes in each patient. Interpersonal heterogeneity is manifested by various combinations of CTC phenotypes in patients (from 1 to 17 phenotypes).


Author(s):  
Baojuan Han ◽  
Lina Dong ◽  
Jing Zhou ◽  
Yan Yang ◽  
Jiaxun Guo ◽  
...  

AbstractThis work investigated the clinical prognostic implications and biological function of plasma soluble programmed cell death ligand 1 in breast cancer patients. Plasma sPD-L1 levels of recurrent/metastatic breast cancer patients were determined, and the association of sPD-L1 levels and metastatic progression-free survival and metastatic overall survival was assessed. The PD-L1 expression on breast cancer cells was analyzed by flow cytometry, and the level of sPD-L1 in the supernatant of breast cancer cells was determined by enzyme-linked immunosorbent assay. Furthermore, the effect of sPD-L1 on the proliferation and apoptosis of T lymphocytes was detected by WST-1 assay and flow cytometry. The plasma sPD-L1 levels in 208 patients with recurrent/metastatic breast cancer before receiving first-line rescue therapy were measured. The optimal cutoff value of plasma sPD-L1 for predicting disease progression was 8.774 ng/ml. Univariate and multivariate analyses identified high sPD-L1 level (≥ 8.774 ng/ml) and visceral metastasis were independent factors associated with poor prognosis. Relevance analysis showed that the plasma sPD-L1 level was weaklyassociated with some systemic inflammation markers, including white cell count (WBC), absolute monocytecount, and absolute neutrophil count. Furthermore, we found sPD-L1 could be found in supernatant of culture with breast cancer cell line expressing PD-L1 on the cell surface and inhibit T lymphocyte function, playing a negative regulatory role in cellular immunity. sPD-L1 was a good tumor predictive maker in breast cancer and it may play a potentially important role in immune tolerance.


2015 ◽  
Vol 5 (3) ◽  
pp. e1100791 ◽  
Author(s):  
E. Verronèse ◽  
A. Delgado ◽  
J. Valladeau-Guilemond ◽  
G. Garin ◽  
S. Guillemaut ◽  
...  

Author(s):  
Xiaoqing Sun ◽  
Zhenyu He ◽  
Ling Guo ◽  
Caiqin Wang ◽  
Chuyong Lin ◽  
...  

Abstract Background Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. Methods In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients’ samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. Results ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. Conclusion Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document