Effect of cytoplasmic acidification on the membrane potential of T-lymphocytes: Role of trace metals

1990 ◽  
Vol 116 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Michael J. Mason ◽  
Sergio Grinstein
2020 ◽  
Vol 21 (15) ◽  
pp. 1558-1565
Author(s):  
Matteo Santoni ◽  
Francesco Massari ◽  
Liang Cheng ◽  
Alessia Cimadamore ◽  
Marina Scarpelli ◽  
...  

The carcinogenesis of prostate cancer (PCa) results from a complex series of events. Chronic inflammation and infections are crucial in this context. Infiltrating M2 type macrophages, as well as neutrophils and T lymphocytes, contribute to PCa development, progression and response to therapy. The preliminary findings on the efficacy of immunotherapy in patients with PCa were not encouraging. However, a series of studies investigating anti-PD-L1 agents such as Atezolizumab, Avelumab and Durvalumab used alone or in combination with other immunotherapies, chemotherapy or locoregional approaches are in course in this tumor. In this review, we illustrate the role of immune cells and PD-L1 expression during PCa carcinogenesis and progression, with a focus on ongoing clinical trials on anti-PD-L1 agents in this context.


2021 ◽  
Vol 22 (11) ◽  
pp. 5645
Author(s):  
Stefano Morotti ◽  
Haibo Ni ◽  
Colin H. Peters ◽  
Christian Rickert ◽  
Ameneh Asgari-Targhi ◽  
...  

Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart’s primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Anna Signorile ◽  
Anna Ferretta ◽  
Maddalena Ruggieri ◽  
Damiano Paolicelli ◽  
Paolo Lattanzio ◽  
...  

Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.


1986 ◽  
Vol 61 (1) ◽  
pp. 180-184 ◽  
Author(s):  
S. A. Esau ◽  
N. Sperelakis

With muscle fatigue the chloride (Cl-) conductance of the sarcolemmal membrane decreases. The role of lowered Cl- conductance in the prolongation of relaxation seen with fatigue was studied in isolated hamster diaphragm strips. The muscles were studied in either a Krebs solution or a low Cl- solution in which half of the NaCl was replaced by Na-gluconate. Short tetanic contractions were produced by a 160-ms train of 0.2-ms pulses at 60 Hz from which tension (T) and the time constant of relaxation were measured. Resting membrane potential (Em) was measured using KCl-filled microelectrodes with resistances of 15–20 M omega. Mild fatigue (20% fall in tension) was induced by 24–25 tetanic contractions at the rate of 2/s. There was no difference in Em or T in the two solutions, either initially or with fatigue. The time constant of relaxation was greater in low Cl- solution, both initially (22 +/- 3 vs. 18 +/- 5 ms, mean +/- SD, P less than 0.05) and with fatigue (51 +/- 18 vs. 26 +/- 7 ms, P less than 0.005). Lowering of sarcolemmal membrane Cl- conductance appears to play a role in the slowing of relaxation of hamster diaphragm muscle seen with fatigue.


2002 ◽  
Vol 282 (5) ◽  
pp. C1000-C1008 ◽  
Author(s):  
Kara L. Kopper ◽  
Joseph S. Adorante

In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2+ concentration ([Ca2+]i) following a Ca2+ load induced by 1 μM thapsigargin and 10 μM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na+ dependent and inhibited by 5 mM Ni2+. In cells with normal intracellular Na+ concentration ([Na+]i), removal of bath Na+, which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unless cell Ca2+ buffer capacity was reduced. When N1E-115 cells were Na+ loaded using 100 μM veratridine and 4 μg/ml scorpion venom, the rate of the reverse mode of the Na+/Ca2+ exchanger was apparently enhanced, since an ∼4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na+/Ca2+ exchanger (net efflux of Ca2+) by observing increases (∼ 6 mM) in [Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could only be observed when a continuous ionomycin-induced influx of Ca2+ occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 μM) depolarized N1E-115 cells (∼25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250–500 μM benzamil. These data provide evidence for the presence of an electrogenic Na+/Ca2+ exchanger that is capable of regulating [Ca2+]i after release of Ca2+ from cell stores.


1996 ◽  
Vol 184 (2) ◽  
pp. 485-492 ◽  
Author(s):  
M A Alexander-Miller ◽  
G R Leggatt ◽  
A Sarin ◽  
J A Berzofsky

Experimental data suggest that negative selection of thymocytes can occur as a result of supraoptimal antigenic stimulation. It is unknown, however, whether such mechanisms are at work in mature CD8+ T lymphocytes. Here, we show that CD8+ effector cytotoxic T lymphocytes (CTL) are susceptible to proliferative inhibition by high dose peptide antigen, leading to apoptotic death mediated by TNF-alpha release. Such inhibition is not reflected in the cytolytic potential of the CTL, since concentrations of antigen that are inhibitory for proliferation promote efficient lysis of target cells. Thus, although CTL have committed to the apoptotic pathway, the kinetics of this process are such that CTL function can occur before death of the CTL. The concentration of antigen required for inhibition is a function of the CTL avidity, in that concentrations of antigen capable of completely inhibiting high avidity CTL maximally stimulate low avidity CTL. Importantly, the inhibition can be detected in both activated and resting CTL. Blocking studies demonstrate that the CD8 molecule contributes significantly to the inhibitory signal as the addition of anti-CD8 antibody restores the proliferative response. Thus, our data support the model that mature CD8+ CTL can accommodate an activation signal of restricted intensity, which, if surpassed, results in deletion of that cell.


2011 ◽  
Vol 1217 (1) ◽  
pp. 18-31 ◽  
Author(s):  
Lynn M. Heltemes-Harris ◽  
Mark J. L. Willette ◽  
Kieng B. Vang ◽  
Michael A. Farrar

Sign in / Sign up

Export Citation Format

Share Document