Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain ofListeria monocytogenes causing endocarditis

1993 ◽  
Vol 12 (12) ◽  
pp. 928-937 ◽  
Author(s):  
K. Hadorn ◽  
H. Hächler ◽  
A. Schaffner ◽  
F. H. Kayser
1999 ◽  
Vol 43 (12) ◽  
pp. 2925-2929 ◽  
Author(s):  
Lydia Bass ◽  
Cynthia A. Liebert ◽  
Margie D. Lee ◽  
Anne O. Summers ◽  
David G. White ◽  
...  

ABSTRACT Antibiotic resistance among avian bacterial isolates is common and is of great concern to the poultry industry. Approximately 36% (n = 100) of avian, pathogenic Escherichia coli isolates obtained from diseased poultry exhibited multiple-antibiotic resistance to tetracycline, oxytetracycline, streptomycin, sulfonamides, and gentamicin. Clinical avian E. coli isolates were further screened for the presence of markers for class 1 integrons, the integron recombinase intI1 and the quaternary ammonium resistance gene qacEΔ1, in order to determine the contribution of integrons to the observed multiple-antibiotic resistance phenotypes. Sixty-three percent of the clinical isolates were positive for the class 1 integron markersintI1 and qacEΔ1. PCR analysis with the conserved class 1 integron primers yielded amplicons of approximately 1 kb from E. coli isolates positive for intI1 andqacEΔ1. These PCR amplicons contained the spectinomycin-streptomycin resistance gene aadA1. Further characterization of the identified integrons revealed that many were part of the transposon Tn21, a genetic element that encodes both antibiotic resistance and heavy-metal resistance to mercuric compounds. Fifty percent of the clinical isolates positive for the integron marker gene intI1 as well as for theqacEΔ1 and aadA1 cassettes also contained the mercury reductase gene merA. The correlation between the presence of the merA gene with that of the integrase and antibiotic resistance genes suggests that these integrons are located in Tn21. The presence of these elements among avianE. coli isolates of diverse genetic makeup as well as inSalmonella suggests the mobility of Tn21 among pathogens in humans as well as poultry.


1989 ◽  
Vol 33 (9) ◽  
pp. 1627-1630 ◽  
Author(s):  
P J Willson ◽  
W L Albritton ◽  
L Slaney ◽  
J K Setlow

2010 ◽  
Vol 57 (3) ◽  
pp. 162-170 ◽  
Author(s):  
P. Poeta ◽  
H. Radhouani ◽  
A. Gonçalves ◽  
N. Figueiredo ◽  
C. Carvalho ◽  
...  

1987 ◽  
Vol 33 (10) ◽  
pp. 905-913 ◽  
Author(s):  
Patricia N. Tonin ◽  
Robert B. Grant

Analysis of six Shigella flexneri and four S. sonnei isolates with trimethoprim (Tp) resistance from clinical cases in Ontario has shown that, in all isolates, the Tp resistance is mediated by gene(s) on conjugative, multiple antibiotic-resistance plasmids. The physical and genetic characterization of these plasmids revealed that there are three different Tp resistance plasmids. One group, composed of all six S. flexneri plasmids, consists of plasmids which are about 70 megadaltons (MDa) and inhibit the fertility of an Escherichia coli Hfr strain (Fi+). A representative member of this group, pPT4, demonstrates a weak incompatibility reaction with IncFI plasmid R455-2. Another group, three of the four S. sonnei plasmids, contains plasmids which are about 43 MDa, Fi−, and mediate propagation of phage PRD1. The third group, the remaining S. sonnei plasmid, is 53 MDa,fi+, mediates propagation of phages fd and MS2, and is incompatible with IncFII plasmid R100. These plasmids also have been differentiated by restriction endonuclease fragment profiles. Analysis of pPT4 has revealed that the Tp resistance of this plasmid is transposable. The transposon, Tn536, is different from previously described Tp resistance transposons; it is 16 MDa, and in addition to Tp, it encodes resistance to mercuric chloride ions, spectinomycin, streptomycin, and sulfonamides.


Sign in / Sign up

Export Citation Format

Share Document