Influence of acute alcohol intoxication on the left ventricular pressure-volume relations of the rat heart

1980 ◽  
Vol 75 (1) ◽  
pp. 279-280
Author(s):  
A. Hepp ◽  
H. Schier ◽  
K. Kochsiek
2008 ◽  
Vol 193 (3) ◽  
pp. 205-217 ◽  
Author(s):  
J. Op Den Buijs ◽  
L. Ligeti ◽  
T. Ivanics ◽  
Z. Miklós ◽  
G. J. Van Der Vusse ◽  
...  

1975 ◽  
Vol 39 (6) ◽  
pp. 1043-1047 ◽  
Author(s):  
R. T. Dowell ◽  
A. F. Cutilletta ◽  
P. C. Sodt

We have developed methods for evaluating muscle function in the intact rat heart in situ using a contractility index (dP/dt)P-1, calculated from left ventricular pressure derivative-left ventricular pressure loop plots. Aortic flow measurements were also taken to further characterize in situ rat heart function. The preparation remained functionally stable and was within physiological blood gas and pH limits for at least 30 min following surgical procedures. The contractility index was not influenced by increased afterload, decreased preload or increased heart rate; however, appropriate changes were observed following isoproterenol and propranolol administration. Appropriate changes in aortic flow measurements were observed also with the above interventions. These studies demonstrate that the in situ rat heart is a stable physiological experimental preparation. It should be useful for evaluating heart function since a contractility index derived from pressure-velocity relationships and measurements necessary for pump function analysis can be obtained simultaneously.


Circulation ◽  
1995 ◽  
Vol 91 (7) ◽  
pp. 2010-2017 ◽  
Author(s):  
J.J. Schreuder ◽  
F.H. van der Veen ◽  
E.T. van der Velde ◽  
F. Delahaye ◽  
O. Alfieri ◽  
...  

1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingtao Na ◽  
Haifeng Jin ◽  
Xin Wang ◽  
Kan Huang ◽  
Shuang Sun ◽  
...  

Abstract Background Heart failure (HF) is a clinical syndrome characterized by left ventricular dysfunction or elevated intracardiac pressures. Research supports that microRNAs (miRs) participate in HF by regulating  targeted genes. Hence, the current study set out to study the role of HDAC3-medaited miR-18a in HF by targeting ADRB3. Methods Firstly, HF mouse models were established by ligation of the left coronary artery at the lower edge of the left atrial appendage, and HF cell models were generated in the cardiomyocytes, followed by ectopic expression and silencing experiments. Numerous parameters including left ventricular posterior wall dimension (LVPWD), interventricular septal dimension (IVSD), left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LEVDP), heart rate (HR), left ventricular pressure rise rate (+ dp/dt) and left ventricular pressure drop rate (-dp/dt) were measured in the mice. In addition, apoptosis in the mice was detected by means of TUNEL staining, while RT-qPCR and Western blot analysis were performed to detect miR-18a, HDAC3, ADRB3, cMyb, MMP-9, Collagen 1 and TGF-β1 expression patterns. Dual luciferase reporter assay validated the targeting relationship between ADRB3 and miR-18a. Cardiomyocyte apoptosis was determined by means of flow cytometry. Results HDAC3 and ADRB3 were up-regulated and miR-18a was down-regulated in HF mice and cardiomyocytes. In addition, HDAC3 could reduce the miR-18a expression, and ADRB3 was negatively-targeted by miR-18a. After down-regulation of HDAC3 or ADRB3 or over-expression of miR-18a, IVSD, LVEDD, LVESD and LEVDP were found to be decreased but LVPWD, LVEF, LVFS, LVSP, + dp/dt, and −dp/dt were all increased in the HF mice, whereas fibrosis, hypertrophy and apoptosis of HF cardiomyocytes were declined. Conclusion Collectively, our findings indicate that HDAC3 silencing confers protection against HF by inhibiting miR-18a-targeted ADRB3.


Sign in / Sign up

Export Citation Format

Share Document