Net assimilation rate and relative nitrogen assimilation rate in relation to the dry matter production of alfalfa cultivars

1981 ◽  
Vol 59 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Geok-Yong Tan ◽  
Wai-Koon Tan
Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


1967 ◽  
Vol 68 (1) ◽  
pp. 157-164 ◽  
Author(s):  
R. Q. Cannell

Net assimilation rate (E) was measured in three experiments involving related species and cultivated varieties with increasing grain yield potential in the genera Hordeum, Avena and Triticum. No consistent differences in E between the barley varieties were found, but in the oat and wheat experiments, Abundance and Atle respectively had lower values of E. However, these differences did not suggest that E had been influenced in selecting for grain yield. The relationship of E to dry-matter production was calculated and discussed.


2021 ◽  
Vol 265 ◽  
pp. 108104
Author(s):  
Santiago Julián Kelly ◽  
María Gabriela Cano ◽  
Diego Darío Fanello ◽  
Eduardo Alberto Tambussi ◽  
Juan José Guiamet

2015 ◽  
Vol 28 (2) ◽  
pp. 155-175
Author(s):  
Witold Drezner

The correlation between the net assimilation rate and the degree of plant tillering are investigated for several varieties of simple winter wheat. The net assimilation rate (E, NAR, An) of the studied varieties for different degrees of tillering, individual shoots and individual plants is described according to the units mg/cm<sup>2</sup> • 24 h. Index of efficiency of assimilation surface (F, LAR, I<sub>S</sub>) is determined in units cm<sup>2</sup>/mg. The tillering ability of vegetative shoots in plaints is a very important factor which increases the total assimilate stirfaice value and the assimilation effectivity of the plant's biomass.


1978 ◽  
Vol 90 (3) ◽  
pp. 569-577 ◽  
Author(s):  
G. O. Iremiren ◽  
G. M. Milbourn

SummaryTotal dry-matter yield of maize silage rose asymptotically as density was increased up to 17 plants/m2. Over the range 11–17 plants/m2, which is generally higher than is used in the U.K., the increase in yield was 1–1·6 t dry matter/ha which can justify the higher seed cost and although there was no adverse affect on time of maturity the risk of lodging increased at the highest density. During the harvest period whilst whole crop dry-matter percentage was rising from 23 to 28%, the ear dry-matter content rose steadily from 29 to 35%, whereas the leaf and stem dry-matter content remained essentially constant and only dried out at a later stage after a frost.Caldera 535 had a higher leaf area index and net assimilation rate than the earlier variety Julia which it outyielded by 15%. The additional yield was mainly stem tissue and the greater vegetative production caused an 11-day delay in reaching the silage stage of maturity (25% crop D.M.). NO differences occurred between density treatments and varieties in the forage quality components considered, namely percentage drymatter digestibility, modified acid-detergent fibre, crude protein and ash. Thus in U.K. conditions, total dry-matter yield exerts an overriding influence on the yields per unit area of these quality constituents. This contrasts with reports from the U.S.A. in which a reduced grain/stover ratio adversely influences silage quality.Removal of the whole ear (including husk and rachis) at an early stage in ear development resulted in a 50% reduction in the final dry-matter yield. In the earless plants, leaf area and net assimilation rate was lower, but the dry-matter content of the leaves and stem was considerably higher, and a marked purple coloration developed indicative of excess starch concentration. These results emphasize the need in maize silage not only for an adequate leaf canopy, best obtained early in the growing season by using high planting density and subsequently by using late maturing varieties, but also for sufficient sink capacity in the ear as well as in the stem fraction.


Weed Science ◽  
1983 ◽  
Vol 31 (3) ◽  
pp. 318-323 ◽  
Author(s):  
David T. Patterson ◽  
Elizabeth P. Flint

Growth dynamics, water relations, and photosynthesis of soybean [Glycine max(L.) Merr. ‘Ransom’], common cocklebur (Xanthium pensylvanicumWallr.), jimsonweed (Datura stramoniumL.), prickly sida (Sida spinosaL.), sicklepod (Cassia obtusifoliaL.), smooth pigweed (Amaranthus hybridusL.), spurred anoda [Anoda cristata(L.) Schlect.], and velvetleaf (Abutilon theophrastiMedic.) were compared in a controlled-environment greenhouse programmed for 32C day and 23C night temperatures. Net photosynthetic rates, net assimilation rates, and water-use efficiency on a whole-plant or single-leaf basis were greatest in the C4-plant, smooth pigweed. Total dry-matter production at 29 days after planting was greatest in common cocklebur and least in jimsonweed. Interspecific differences in dry-matter production were highly positively correlated with leaf area duration and negatively correlated with net assimilation rate. Threshold leaf water-potential levels causing stomatal closure varied among species. The stomata of jimsonweed were the most sensitive to water stress and those of prickly sida were the least sensitive.


1967 ◽  
Vol 45 (11) ◽  
pp. 2063-2072 ◽  
Author(s):  
Holger Brix

Seedlings of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) were grown in growth chambers under all combinations of three temperatures (13, 18, and 24 °C) and three light intensities (450, 1000, and 1800 ft-c). Dry matter production of leaves, stem, and roots was determined at 65 and 100 days after germination. The leaf area produced per unit of leaf dry weight and the dry matter distribution to the plant organs was measured. Net assimilation rates between the ages of 65 and 100 days were calculated. Rates of photosynthesis per unit of leaf were determined at different light intensities and temperatures, and rates of respiration of plant top and of roots were found for different temperatures.Increasing light intensity affected dry matter production in two opposing ways: (i) it increased the rate of photosynthesis per unit leaf area, and (ii) it decreased the leaf area added per unit of dry matter produced. A pronounced increase in growth with increase in temperature from 13 to 18 °C was a result of a temperature influence on production of leaf area rather than the effect of photosynthesis per unit of leaf. Net assimilation rates decreased with increase in temperature at all light intensities.


Sign in / Sign up

Export Citation Format

Share Document