The biaxial loading response of powder aluminum at elevated temperature

1994 ◽  
Vol 34 (3) ◽  
pp. 249-255 ◽  
Author(s):  
T. O. Woods ◽  
D. G. Berghaus
Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1525
Author(s):  
Alena Uhnáková ◽  
Anna Machová ◽  
Petr Hora

We present the results of free 3D molecular dynamics (MD) simulations, focused on the influence of temperature on the ductile-brittle behavior of a pre-existing central Griffith through microcrack (1¯10)[110] (crack plane/crack front) under biaxial loading σA and σB in tension mode I. At temperatures of 300 K and 600 K, the MD results provide new information on the threshold values of the stress intensity factor K and the energy release rate G, needed for the emission of <111>{112} blunting dislocations that support crack stability. A simple procedure for the evaluation of thermal activation from MD results is proposed in the paper. 3D atomistic results are compared with continuum predictions on thermal activation of the crack induced dislocation generation. At elevated temperature T and biaxiality ratios σB/σA ≤ 0.8 dislocation emission in MD is observed, supported by thermal activation energy of about ~30 kBT. With increasing temperature, the ductile-brittle transition moves to a higher biaxiality ratios in comparison with the situation at temperature of ~0 K. Near the transition, dislocation emission occurs at lower loadings than expected by continuum predictions. For the ratios σB/σA ≥ 1, the elevated temperature facilitates (surprisingly) the microcrack growth below Griffith level.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Sign in / Sign up

Export Citation Format

Share Document