Full-field surface-strain and displacement analysis of three-dimensional objects by speckle interferometry

1972 ◽  
Vol 12 (10) ◽  
pp. 454-460 ◽  
Author(s):  
Y. Y. Hung ◽  
J. D. Hovanesian
1998 ◽  
Vol 152 (1-3) ◽  
pp. 19-22 ◽  
Author(s):  
T Santhanakrishnan ◽  
P.K Palanisamy ◽  
N.Krishna Mohan ◽  
R.S Sirohi

Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 6777-6792
Author(s):  
N. H. Vonk ◽  
N. A. M. Verschuur ◽  
R. H. J. Peerlings ◽  
M. G. D. Geers ◽  
J. P. M. Hoefnagels

Abstract Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10-4 and 7 × 10-4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract


2011 ◽  
Vol 70 ◽  
pp. 33-38 ◽  
Author(s):  
Andrea Davighi ◽  
Richard L. Burguete ◽  
Mara Feligiotti ◽  
Erwin Hack ◽  
Simon James ◽  
...  

A reference material is defined as material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process. Reference materials provide a simple definition of the measured quantity that can be traced to an international standard and can be used to assess the uncertainty associated with a measurement system. Previous work established a reference material and procedure for calibrating full-field optical systems suitable for measuring static, in-plane strain distributions. Efforts are now underway to extend this work to the calibration of systems capable of measuring three-dimensional deformation fields induced by dynamic loading. The important attributes for a dynamic reference material have been identified in a systematic and rational fashion, which have been subsequently translated into a generic design specification. Initial prototypes of candidate designs have been produced and evaluated using experimental modal analysis and digital speckle interferometry, and the results have been compared with finite element analyses. Based on the outcome of this initial evaluation, further refinements in design and manufacturing are proposed.


Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 72
Author(s):  
Luca Tonti ◽  
Alessandro Patti

Collision between rigid three-dimensional objects is a very common modelling problem in a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from realistic animation of polyhedral shapes for computer vision to the description of thermodynamic and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the former provides a more accessible coding and user-friendly implementation as it exploits OpenMP directives for automatic vectorization.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


1993 ◽  
Vol 94 (1) ◽  
Author(s):  
Y. Matsakis ◽  
M. Lipshits ◽  
V. Gurfinkel ◽  
A. Berthoz

2007 ◽  
Vol 32 (10) ◽  
pp. 1229 ◽  
Author(s):  
Conor P. McElhinney ◽  
John B. McDonald ◽  
Albertina Castro ◽  
Yann Frauel ◽  
Bahram Javidi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document