scholarly journals Fast Overlap Detection between Hard-Core Colloidal Cuboids and Spheres. The OCSI Algorithm

Algorithms ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 72
Author(s):  
Luca Tonti ◽  
Alessandro Patti

Collision between rigid three-dimensional objects is a very common modelling problem in a wide spectrum of scientific disciplines, including Computer Science and Physics. It spans from realistic animation of polyhedral shapes for computer vision to the description of thermodynamic and dynamic properties in simple and complex fluids. For instance, colloidal particles of especially exotic shapes are commonly modelled as hard-core objects, whose collision test is key to correctly determine their phase and aggregation behaviour. In this work, we propose the Oriented Cuboid Sphere Intersection (OCSI) algorithm to detect collisions between prolate or oblate cuboids and spheres. We investigate OCSI’s performance by bench-marking it against a number of algorithms commonly employed in computer graphics and colloidal science: Quick Rejection First (QRI), Quick Rejection Intertwined (QRF) and a vectorized version of the OBB-sphere collision detection algorithm that explicitly uses SIMD Streaming Extension (SSE) intrinsics, here referred to as SSE-intr. We observed that QRI and QRF significantly depend on the specific cuboid anisotropy and sphere radius, while SSE-intr and OCSI maintain their speed independently of the objects’ geometry. While OCSI and SSE-intr, both based on SIMD parallelization, show excellent and very similar performance, the former provides a more accessible coding and user-friendly implementation as it exploits OpenMP directives for automatic vectorization.

2020 ◽  
Vol 25 (6) ◽  
pp. 1247-1266 ◽  
Author(s):  
Alexandre Danescu ◽  
Ioan R. Ionescu

The interplay between mechanics and geometry is used to construct a theoretical framework able to describe the class of three-dimensional objects that can be fabricated from suitable planar designs by using relaxation of pre-strains/stress in ultra-thin films. Small deformations and large rotations are used here to model the elastic relaxation into various three-dimensional shapes. Over the kinematics associated with the designed mid-surface, a small perturbation of Love–Kirchhoff type is considered in order to deduce the design plate-to-shell equations for orthotropic materials with an important pre-stress/strain heterogeneity. The resulting equations for the efforts average and efforts moments provide the supplementary equations to compute the in-plane pre-strain/stress. In particular, for materials with a weak material transversal heterogeneity the moments equations involve only the thickness, the curvature tensor, and the pre-strain/stress moments. Special attention is devoted to materials that can be obtained by layer-by-layer crystal growth (molecular beam epitaxy), which posses an in-plane isotropic pre-strain. We have found that a rectangular plate could relax both into a cylindrical surface or on a part of a sphere in which case it should have a small diameter with respect to the sphere radius. In both cases, the theoretical estimates have been compared with the experimental realizations and finite-element numerical computations and we found very good agreement among all of them. In addition, for the cone geometry we found that the design is not possible from an isotropic pre-stress with an in-plane homogeneity. However, the 3D finite-element computation of the relaxed surface with a (necessary) non-isotropic pre-stress obtained from the theoretical estimates matches remarkably well the designed conical surface.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rodrigo V. Honorato ◽  
Panagiotis I. Koukos ◽  
Brian Jiménez-García ◽  
Andrei Tsaregorodtsev ◽  
Marco Verlato ◽  
...  

Structural biology aims at characterizing the structural and dynamic properties of biological macromolecules at atomic details. Gaining insight into three dimensional structures of biomolecules and their interactions is critical for understanding the vast majority of cellular processes, with direct applications in health and food sciences. Since 2010, the WeNMR project (www.wenmr.eu) has implemented numerous web-based services to facilitate the use of advanced computational tools by researchers in the field, using the high throughput computing infrastructure provided by EGI. These services have been further developed in subsequent initiatives under H2020 projects and are now operating as Thematic Services in the European Open Science Cloud portal (www.eosc-portal.eu), sending >12 millions of jobs and using around 4,000 CPU-years per year. Here we review 10 years of successful e-infrastructure solutions serving a large worldwide community of over 23,000 users to date, providing them with user-friendly, web-based solutions that run complex workflows in structural biology. The current set of active WeNMR portals are described, together with the complex backend machinery that allows distributed computing resources to be harvested efficiently.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
Vol 11 (13) ◽  
pp. 5931
Author(s):  
Ji’an You ◽  
Zhaozheng Hu ◽  
Chao Peng ◽  
Zhiqiang Wang

Large amounts of high-quality image data are the basis and premise of the high accuracy detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect various high-quality ship image data based on the marine environment. A novel method based on CNN is proposed to generate a large number of high-quality ship images to address this. We obtained ship images with different perspectives and different sizes by adjusting the ships’ postures and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into 2D ship image according to the principle of pinhole imaging. We selected specific experimental scenes as background images, and the target ships of the 2D ship images were superimposed onto the background images to generate “Simulation–Real” ship images (named SRS images hereafter). Additionally, an image annotation method based on SRS images was designed. Finally, the target detection algorithm based on CNN was used to train and test the generated SRS images. The proposed method is suitable for generating a large number of high-quality ship image samples and annotation data of corresponding ship images quickly to significantly improve the accuracy of ship detection. The annotation method proposed is superior to the annotation methods that label images with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.


i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2476
Author(s):  
Haiwen Li ◽  
Sathwik S. Kasyap ◽  
Kostas Senetakis

The use of polypropylene fibers as a geosynthetic in infrastructures is a promising ground treatment method with applications in the enhancement of the bearing capacity of foundations, slope rehabilitation, strengthening of backfills, as well as the improvement of the seismic behavior of geo-systems. Despite the large number of studies published in the literature investigating the properties of fiber-reinforced soils, less attention has been given in the evaluation of the dynamic properties of these composites, especially in examining damping characteristics and the influence of fiber inclusion and content. In the present study, the effect of polypropylene fiber inclusion on the small-strain damping ratio of sands with different gradations and various particle shapes was investigated through resonant column (macroscopic) experiments. The macroscopic test results suggested that the damping ratio of the mixtures tended to increase with increasing fiber content. Accordingly, a new expression was proposed which considers the influence of fiber content in the estimation of the small-strain damping of polypropylene fiber-sand mixtures and it can be complementary of damping modeling from small-to-medium strains based on previously developed expressions in the regime of medium strains. Additional insights were attempted to be obtained on the energy dissipation and contribution of fibers of these composite materials by performing grain-scale tests which further supported the macroscopic experimental test results. It was also attempted to interpret, based on the grain-scale tests results, the influence of fiber inclusion in a wide spectrum of properties for fiber-reinforced sands providing some general inferences on the contribution of polypropylene fibers on the constitutive behavior of granular materials.


2015 ◽  
Vol 752-753 ◽  
pp. 1406-1412
Author(s):  
Lei Zeng ◽  
Jian Chen ◽  
Han Ning Li ◽  
Bin Yan ◽  
Yi Fu Xu ◽  
...  

In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. As a vital part of the PCB, the via connects the devices, the components and the wires and plays a very important role for the connection of the circuits. With the development of testing technology, the nondestructive testing of the via extends from two dimension to three dimension in recent years. This paper proposes a three dimensional detection algorithm using morphology method to test the via. The proposed algorithm takes full advantage of the three dimensional structure and shape information of the via. We have used the proposed method to detect via from PCB images with different size and quality, and found the detection performances to be very encouraging.


1993 ◽  
Vol 94 (1) ◽  
Author(s):  
Y. Matsakis ◽  
M. Lipshits ◽  
V. Gurfinkel ◽  
A. Berthoz

2013 ◽  
Vol 347-350 ◽  
pp. 3505-3509 ◽  
Author(s):  
Jin Huang ◽  
Wei Dong Jin ◽  
Na Qin

In order to reduce the difficulty of adjusting parameters for the codebook model and the computational complexity of probability distribution for the Gaussian mixture model in intelligent visual surveillance, a moving objects detection algorithm based on three-dimensional Gaussian mixture codebook model using XYZ color model is proposed. In this algorithm, a codebook model based on XYZ color model is built, and then the Gaussian model based on X, Y and Z components in codewords is established respectively. In this way, the characteristic of the three-dimensional Gaussian mixture model for the codebook model is obtained. The experimental results show that the proposed algorithm can attain higher real-time capability and its average frame rate is about 16.7 frames per second, while it is about 8.3 frames per second for the iGMM (improved Gaussian mixture model) algorithm, about 6.1 frames per second for the BM (Bayes model) algorithm, about 12.5 frames per second for the GCBM (Gaussian-based codebook model) algorithm, and about 8.5 frames per second for the CBM (codebook model) algorithm in the comparative experiments. Furthermore the proposed algorithm can obtain better detection quantity.


Sign in / Sign up

Export Citation Format

Share Document