The approximate solution of the self-similar problem for radial flow of non-newtonian fluids through porous media

1988 ◽  
Vol 9 (8) ◽  
pp. 777-786 ◽  
Author(s):  
Yuan Yi-wu
Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 314
Author(s):  
Tianyu Jing ◽  
Huilan Ren ◽  
Jian Li

The present study investigates the similarity problem associated with the onset of the Mach reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the order of the induction length. The Mach reflection becomes non-self-similar during the transition of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point trajectory first rises from the self-similar result due to compressive waves generated by the “hot spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing the restriction, that the frozen limit can be extended to a much larger distance than expected. The obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions, which has previously been observed in both experiments and numerical simulations.


1992 ◽  
Vol 3 (4) ◽  
pp. 319-341 ◽  
Author(s):  
S. P. Hastings ◽  
L. A. Peletier

We discuss the self-similar solutions of the second kind associated with the propagation of turbulent bursts in a fluid at rest. Such solutions involve an eigenvalue parameter μ, which cannot be determined from dimensional analysis. Existence and uniqueness are established and the dependence of μ on a physical parameter λ in the problem is studied: estimates are obtained and the asymptotic behaviour as λ → ∞ is established.


1981 ◽  
Vol 104 ◽  
pp. 467-482 ◽  
Author(s):  
L. A. Romero ◽  
R. H. Nilson

Shock-like features of phase-change flows in porous media are explained, based on the generalized Darcy model. The flow field consists of two-phase zones of parabolic/hyperbolic type as well as adjacent or imbedded single-phase zones of either parabolic (superheated, compressible vapour) or elliptic (subcooled, incompressible liquid) type. Within the two-phase zones or at the two-phase/single-phase interfaces, there may be steep gradients in saturation and temperature approaching shock-like behaviour when the dissipative effects of capillarity and heat-conduction are negligible. Illustrative of these shocked, multizone flow-structures are the transient condensing flows in porous media, for which a self-similar, shock-preserving (Rankine–Hugoniot) analysis is presented.


Sign in / Sign up

Export Citation Format

Share Document