Dominant Diffusing Mode in the Self-Similar Phase Separation of a Magnetic Suspension in a Magnetic Field

Langmuir ◽  
1998 ◽  
Vol 14 (3) ◽  
pp. 578-581 ◽  
Author(s):  
Adriana S. Silva ◽  
Denis Wirtz
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Suman Sarkar ◽  
Bikash Sahoo

Abstract The stagnation point flow of a non-Newtonian Reiner–Rivlin fluid has been studied in the presence of a uniform magnetic field. The technique of similarity transformation has been used to obtain the self-similar ordinary differential equations. In this paper, an attempt has been made to prove the existence and uniqueness of the solution of the resulting free boundary value problem. Monotonic behavior of the solution is discussed. The numerical results, shown through a table and graphs, elucidate that the flow is significantly affected by the non-Newtonian cross-viscous parameter L and the magnetic parameter M.


2002 ◽  
Vol 7 (1) ◽  
pp. 93-102
Author(s):  
V. Kremenetsky

Usually all self‐similar heat boundary layer problems in presence of magnetic field are solved neglecting the Joule heat, created by current, induced in fluid by interaction of velocity and magnetic field. But the analysis of this heat shows that its influence to the temperature field is very important. For vertical flows it is impossible to find self‐similar solution of boundary layer problems due to the Joule heat influence in temperature field. For horizontal flows only two self‐similar boundary layer problems can be formulated: flow near the critical point in magnetic field with the neutral point and in the transverse steady magnetic field.


2020 ◽  
Vol 497 (2) ◽  
pp. 1634-1653 ◽  
Author(s):  
Mahmoud Gholipour

ABSTRACT Several recent simulation works in the non-ideal magnetohydrodynamic (MHD) formalism have shown the importance of ambipolar diffusion (AD) within the protoplanetary discs (PPDs) at large radii. In this study, we model the time evolution of a polytropic PPD in the presence of the AD. In this regard, the non-ideal MHD equations are investigated in the outer region of a PPD where the magnetic field evolution is dominated by the AD. The self-similar solution technique is used for a polytropic fluid including the self-gravity and viscosity. The ambipolar diffusivity and its derivative are crucial for the formulation of this study. Hence, this variable is scaled by an important factor, that is the Elsasser number. The self-similar equations are derived, and the semi-analytical and numerical solutions are presented for the isothermal and polytropic cases. The analytical approach enables us to know the asymptotic behaviour of the physical variables in a PPD, such as the angular momentum and magnetic field. Furthermore, the coupling/decoupling of magnetic field with the angular momentum was discussed analytically to find a corresponding model for the angular momentum loss at large radii of a PPD. Regarding this approach, we found that the magnetic braking induced by the AD at large radii has a high potential to loss the angular momentum even if the turbulent viscosity is not efficient. Also, the sign and values of vertical velocity strongly depends on the sign and values of radial field in the polytropic case.


2020 ◽  
Vol 493 (4) ◽  
pp. 5107-5119
Author(s):  
S M Ghoreyshi ◽  
M Shadmehri

ABSTRACT Observational evidence and theoretical arguments postulate that outflows may play a significant role in the advection-dominated accretion discs (ADAFs). While the azimuthal viscosity is the main focus of most previous studies in this context, recent studies indicated that disc structure can also be affected by the radial viscosity. In this work, we incorporate these physical ingredients and the toroidal component of the magnetic field to explore their roles in the steady-state structure of ADAFs. We thereby present a set of similarity solutions where outflows contribute to the mass loss, angular momentum removal, and the energy extraction. Our solutions indicate that the radial viscosity causes the disc to rotate with a slower rate, whereas the radial gas velocity increases. For strong winds, the infall velocity may be of order the Keplerian speed if the radial viscosity is considered and the saturated conduction parameter is high enough. We show that the strength of magnetic field and of wind can affect the effectiveness of radial viscosity.


2008 ◽  
Vol 74 (4) ◽  
pp. 531-554 ◽  
Author(s):  
R. M. LOCK ◽  
A. J. MESTEL

AbstractWe consider the possibility of self-similar solutions describing the implosion of hollow cylindrical annuli driven by an azimuthal magnetic field, in essence a self-similar imploding liner z-pinch. We construct such solutions for gasdynamics, for ideal ‘β=0’ plasma and for ideal magnetogasdynamics (MGD). In the latter two cases some quantities are singular at the annular boundaries. Numerical solutions of the full ideal MGD initial value problem indicate that the self-similar solutions are not attractive for arbitrary initial conditions, possibly as a result of flux-freezing.


Author(s):  
R. Burridge ◽  
J. R. Willis

AbstractThe title problem is solved by a semi-inverse method involving plane wave expansions. Expressions are given for stress singularities near the crack edge and for the radiation patterns produced by the crack. The case of an elliptical crack in an isotropic medium expanding under shear is examined in detail. Finally, some generalizations are discussed. Solutions are outlined for when the centre of the crack is allowed to move and for a self-similar phase transformation problem, in which a phase change takes place in an expanding ellipsoidal region.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1152
Author(s):  
Tatyana Kirila ◽  
Anna Smirnova ◽  
Alla Razina ◽  
Andrey Tenkovtsev ◽  
Alexander Filippov

The water–salt solutions of star-shaped six-arm poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines were studied by light scattering and turbidimetry. The core was hexaaza[26]orthoparacyclophane and the arms were poly-2-ethyl-2-oxazine, poly-2-isopropyl-2-oxazine, poly-2-ethyl-2-oxazoline, and poly-2-isopropyl-2-oxazoline. NaCl and N-methylpyridinium p-toluenesulfonate were used as salts. Their concentration varied from 0–0.154 M. On heating, a phase transition was observed in all studied solutions. It was found that the effect of salt on the thermosensitivity of the investigated stars depends on the structure of the salt and polymer and on the salt content in the solution. The phase separation temperature decreased with an increase in the hydrophobicity of the polymers, which is caused by both a growth of the side radical size and an elongation of the monomer unit. For NaCl solutions, the phase separation temperature monotonically decreased with growth of salt concentration. In solutions with methylpyridinium p-toluenesulfonate, the dependence of the phase separation temperature on the salt concentration was non-monotonic with minimum at salt concentration corresponding to one salt molecule per one arm of a polymer star. Poly-2-alkyl-2-oxazine and poly-2-alkyl-2-oxazoline stars with a hexaaza[26]orthoparacyclophane core are more sensitive to the presence of salt in solution than the similar stars with a calix[n]arene branching center.


Sign in / Sign up

Export Citation Format

Share Document