Bounds on the neutrino mass from the dark matter in the universe

1985 ◽  
Vol 8 (4) ◽  
pp. 450-460 ◽  
Author(s):  
C. Castagnoli ◽  
P. Galeotti
2011 ◽  
Vol 26 (15) ◽  
pp. 2461-2485 ◽  
Author(s):  
Y. FARZAN

With the start of the LHC, interest in electroweak scale models for the neutrino mass has grown. In this paper, we review two specific models that simultaneously explain neutrino masses and provide a suitable DM candidate. We discuss the implications of these models for various observations and experiments including the LHC, Lepton Flavor Violating (LFV) rare decays, direct and indirect dark matter searches and kaon decay.


2011 ◽  
Vol 26 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
H. HIGASHI ◽  
T. ISHIMA ◽  
D. SUEMATSU

Radiative neutrino mass models have interesting features, which make it possible to relate neutrino masses to the existence of dark matter. However, the explanation of the baryon number asymmetry in the universe seems to be generally difficult as long as we suppose leptogenesis based on the decay of thermal right-handed neutrinos. Since right-handed neutrinos are assumed to have masses of O(1) TeV in these models, they are too small to generate the sufficient lepton number asymmetry. Here we consider Affleck–Dine leptogenesis in a radiative neutrino mass model by using a famous flat direction LHu as an alternative possibility. The constraint on the reheating temperature could be weaker than the ordinary models. The model explains all the origin of the neutrino masses, the dark matter, and also the baryon number asymmetry in the universe.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2010 ◽  
Vol 25 (25) ◽  
pp. 2111-2120 ◽  
Author(s):  
YASAMAN FARZAN

A minimalistic scenario is developed to explain dark matter and tiny but nonzero neutrino masses. A new scalar called SLIM plays the role of the dark matter. Neutrinos achieve Majorana mass through a one-loop diagram. This scenario can be realized for both real and complex SLIM. Simultaneously explaining the neutrino mass and dark matter abundance constrains the scenario. In particular for real SLIM, an upper bound of a few MeV on the masses of the new particles and a lower bound on their coupling is obtained which make the scenario testable. The low energy scenario can be embedded within various SU (2)× U (1) symmetric models. A specific example is introduced and its phenomenological consequences are discussed.


2008 ◽  
Vol 23 (12) ◽  
pp. 1813-1819 ◽  
Author(s):  
K. S. BABU ◽  
ERNEST MA

The model of radiative neutrino mass with dark matter proposed by one of us is extended to include a real singlet scalar field. There are then two important new consequences. One is the realistic possibility of having the lightest neutral singlet fermion (instead of the lightest neutral component of the dark scalar doublet) as the dark matter of the universe. The other is a modification of the effective Higgs potential of the Standard Model, consistent with electroweak baryogenesis.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Sarif Khan

AbstractIn the present work, we have extended the standard model by an abelian $$U(1)_{X}$$ U ( 1 ) X gauge group and additional particles. In particular, we have extended the particle content by three right handed neutrinos, two singlet scalars and two vectors like leptons. Charged assignments under different gauge groups are such that the model is gauge anomaly free and the anomaly contributions cancel among generations. Once the symmetry gets broken then three physical Higgses are produced, one axion like particle (ALP), which also acts as the keV scale FIMP dark matter is produced and the remaining component is absorbed by the extra gauge boson. Firstly, we have successfully generated neutrino mass by the type-I seesaw mechanism for normal hierarchy with the $$3\sigma $$ 3 σ bound on the oscillation parameters. The ALP in the present model can explain the Xenon-1T electron recoil signal at keV scale through its coupling with the electron. We have shown that ALP can be produced from the right handed neutrino decay through the freeze in mechanism. Electron and tauon get masses from dimensional-5 operators at the Planck scale and if we consider the vevs $$v_{1,2} \simeq 10^{12}$$ v 1 , 2 ≃ 10 12 GeV then we can obtain the correct value of the electron mass but not the tauon mass. The vector like leptons help in getting the correct value of the tauon mass through another higher dimensional operator which also has a role in DM production by the $$2 \rightarrow 2$$ 2 → 2 process, giving the correct ballpark value of relic density for suitable reheat temperature of the Universe. We have shown that the ALP production by the higher dimensional operator can explain the electron, tauon mass and Xenon-1T signal simultaneously whereas the decay production can not explain all of them together.


Author(s):  
Nayana Gautam ◽  
Mrinal Kumar Das

We study [Formula: see text] flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two (RH) neutrinos and three sterile fermions leading to a keV scale sterile neutrino DM and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi-Dirac pair present in the model generates lepton asymmetry which then converts to BAU. Thus, this model can provide a simultaneous solution for nonzero neutrino mass, DM content of the universes and the observed baryon asymmetry. The [Formula: see text] flavor symmetry in this model is augmented by additional [Formula: see text] symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain DM mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We try to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the observables.


2009 ◽  
Vol 24 (08) ◽  
pp. 583-589 ◽  
Author(s):  
ERNEST MA ◽  
DAIJIRO SUEMATSU

The neutral member of a Majorana fermion triplet (Σ+, Σ0, Σ-) is proposed as a candidate for the dark matter of the Universe. It may also serve as the seesaw anchor for obtaining a radiative neutrino mass.


2021 ◽  
Vol 503 (4) ◽  
pp. 5091-5099
Author(s):  
Dragan Slavkov Hajdukovic ◽  
Sergej Walter

ABSTRACT In a recent paper, quantum vacuum was considered as a source of gravity, and the simplest, phenomenon, the gravitational polarization of the quantum vacuum by an immersed point-like body, was studied. In this paper, we have derived the effective gravitational charge density of the quantum vacuum, caused by two immersed point-like bodies. Among others, the obtained result proves that quantum vacuum can have regions with a negative effective gravitational charge density. Hence, quantum vacuum, the ‘ocean’ in which all matter of the Universe is immersed, acts as a complex fluid with a very variable gravitational charge density that might include both positive and negative densities; a crucial prediction that can be tested within the Solar system. In the general case of ${N \ge {\rm{3}}}$ point-like bodies, immersed in the quantum vacuum, the analytical solutions are not possible, and the use of numerical methods is inevitable. The key point is that an appropriate numerical method, for the calculation of the effective gravitational charge density of the quantum vacuum induced by N immersed bodies, might be crucial in description of galaxies, without the involvement of dark matter or a modification of gravity. The development of such a valuable numerical method, is not possible, without a previous (and in this study achieved) understanding of the impact of a two-body system.


Sign in / Sign up

Export Citation Format

Share Document