Administration of docosahexaenoic acid influences behavior and plasma catecholamine levels at times of psychological stress

Lipids ◽  
1999 ◽  
Vol 34 (S1) ◽  
pp. S33-S37 ◽  
Author(s):  
Tomohito Hamazaki ◽  
Shigeki Sawazaki ◽  
Tetsuro Nagasawa ◽  
Yoko Nagao ◽  
Yuko Kanagawa ◽  
...  
1994 ◽  
Vol 86 (1) ◽  
pp. 35-41 ◽  
Author(s):  
E. Carstensen ◽  
John S. Yudkin

1. Four studies were designed to test the hypothesis that platelet catecholamine levels may provide a stable index of circulating plasma catecholamine concentrations, and that these are unaffected by acute elevations of plasma levels with physical and psychological stress. 2. To assess the biological variability within individuals, ten subjects were sampled on five occasions over 8–30 h. The intra-individual coefficients of variation for plasma and platelet noradrenaline levels were 193 +10% and 9.5 +4.2%, respectively, and for plasma and platelet adrenaline levels 48.3 +22% and 25.3 +8.4%, respectively. 3. Three other studies investigating the response to physical and psychological stress were performed. In the first study, plasma and platelet catecholamine levels were studied in 12 healthy subjects before and after bicycle ergometry. Plasma catecholamine concentrations increased [noradrenaline by +346 + 323% (P = 0.002) and adrenaline by +314 + 352% (P -0.003)], whereas platelet concentrations showed little change [noradrenaline +4+18% (P = 0.94) and adrenaline +38+ 116% (P = 0.67)]. 4. In the study, catecholamine concentrations were measured in eight subjects after hand immersion in iced water. Plasma noradrenaline concentrations increased significantly (+58 +19%, P = 0.001), but no significant change was found in plasma adrenaline concentrations (+8+44%, P = 0.48). Platelet catecholamine concentrations showed no significant change (noradrenaline +15 +15%, P = 0.052, and adrenaline 19 +82%, P = 0.84). 5. In the third study, catecholamine concentrations were measured in 22 medical students before and after their end-of-year examination. There was no significant change in plasma noradrenaline or adrenaline concentrations (+20 +39%, P = 0.08, and −2 +33%, P = 0.36, respectively) nor in platelet concentrations (noradrenaline +6+19%, P = 0.15, and adrenaline +34 +72, P = 0.65). 6. In 53 subjects sampled between 08.00 and 12.00 hours, plasma and platelet noradrenaline concentrations were significantly correlated (r, = 0.47, P <0.001), but the relationship between plasma and platelet adrenaline concentrations in these subjects did not achieve significance (rs = 0.17, P <0.23). 7. In conclusion, platelet catecholamine concentrations seem to be unaffected by acute short-term stress and may provide a reliable indicator of chronic sympatho-adrenomedullary arousal.


1980 ◽  
Vol 59 (s6) ◽  
pp. 315s-317s ◽  
Author(s):  
W. Rascher ◽  
R. Dietz ◽  
A. Schomig ◽  
J. Weber ◽  
F. Gross

1. In rats with deoxycorticosterone acetate (DOCA) hypertension basal plasma concentrations of noradrenaline and adrenaline correspond to those of sham-treated controls. 2. In DOCA-treated rats frusemide caused a more pronounced increase in plasma noradrenaline than in control rats. This difference was not observed for adrenaline. 3. In the isolated perfused hind-limb preparation the sensitivity to noradrenaline was already enhanced before blood pressure was elevated. 4. These results suggest that the adrenergic vascular tone is increased in DOCA hypertension in rats.


Life Sciences ◽  
1994 ◽  
Vol 55 (21) ◽  
pp. PL409-PL413 ◽  
Author(s):  
Katsunori Nonogaki ◽  
Kotomi Mizuno ◽  
Nobuo Sakamoto ◽  
Akihisa Iguchi

1994 ◽  
Vol 186 (1) ◽  
pp. 289-307 ◽  
Author(s):  
S. Perry ◽  
S. Reid

The response of cannulated rainbow trout (Oncorhynchus mykiss) to acute hypoxia was studied in fish acclimated to two temperatures (5 and 15 °C). Blood/water respiratory variables and plasma catecholamine levels were measured before and 15 min after exposure to hypoxic water varying between 4.0 and 10.7 kPa (30–80 mmHg) oxygen partial pressure (PwO2). Arterial blood PO2 (PaO2) and oxygen content (CaO2) fell during hypoxia in a similar manner at both temperatures, although the changes in CaO2 were often more pronounced in the fish acclimated to 15 °C. Regardless of acclimation temperature, plasma catecholamine levels were consistently elevated at PwO2 values below 8.0 kPa (60 mmHg); the largest increases in plasma catecholamine levels occurred below PwO2=5.3 kPa (40 mmHg). Adrenaline was the predominant catecholamine released into the circulation. Adrenaline was released at PwO2 values of 8.0 kPa or below, whereas noradrenaline was released at PwO2 values of 6.7 kPa or below. The construction of in vivo oxygen dissociation curves demonstrated an obvious effect of acclimation temperature on haemoglobin (Hb) oxygen-affinity; the P50 values at 15 °C and 5 °C were 3.6 kPa (26.7 mmHg) and 1.9 kPa (14.0 mmHg), respectively. At 15 °C, catecholamines were released into the circulation abruptly at a PaO2 threshold of 4.6 kPa (34.5 mmHg) while at 5 °C the catecholamine release threshold was lowered to 3.3 kPa (24.5 mmHg). The difference in the PaO2 catecholamine release thresholds was roughly equivalent to the difference in the P50 values at the two distinct temperatures. Catecholamine release thresholds, calculated on the basis of arterial blood oxygen-saturation (expressed as CaO2/[Hb]), were similar at both temperatures and were approximately equal to 53–55 % Hb O2-saturation. The results support the contention that the lowering of blood oxygen content/saturation rather than PO2 per se is the proximate stimulus/signal causing catecholamine release in rainbow trout during acute hypoxia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andreas Vosseler ◽  
Dongxing Zhao ◽  
Louise Fritsche ◽  
Rainer Lehmann ◽  
Konstantinos Kantartzis ◽  
...  

AbstractExperimental evidence suggests a crucial role of the autonomic nervous system in whole body metabolism with major regulatory effects of the parasympathetic branch in postprandial adaptation. However, the relative contribution of this mechanism is still not fully clear in humans. We therefore compared the effects of transcutaneous auricular vagus nerve stimulation (taVNS, Cerbomed Nemos) with sham stimulation during an oral glucose tolerance test in a randomized, single-blind, cross-over design in 15 healthy lean men. Stimulation was performed for 150 min, 30 min before and during the entire oral glucose tolerance test with stimulation cycles of 30 s of on-phase and 30 s of off-phase and a 25 Hz impulse. Heart rate variability and plasma catecholamine levels were assessed as proxies of autonomic tone in the periphery. Neither analyzed heart rate variability parameters nor plasma catecholamine levels were significantly different between the two conditions. Plasma glucose, insulin sensitivity and insulin secretion were also comparable between conditions. Thus, the applied taVNS device or protocol was unable to achieve significant effects on autonomic innervation in peripheral organs. Accordingly, glucose metabolism remained unaltered. Therefore, alternative approaches are necessary to investigate the importance of the autonomic nervous system in postprandial human metabolism.


Sign in / Sign up

Export Citation Format

Share Document