Maximum likelihood spectrum estimation method and its application in seismo-magnetic relation

1996 ◽  
Vol 9 (3) ◽  
pp. 517-521
Author(s):  
Xiao-Ping Zeng ◽  
Yun-Fang Lin ◽  
Yue-Chen Zhao ◽  
Ming Zhao ◽  
Chun-Rong Xu ◽  
...  
2014 ◽  
Vol 530-531 ◽  
pp. 768-772
Author(s):  
Guo Ping Tan ◽  
Lin Feng Tan ◽  
Lei Cao ◽  
Mei Yan Ju

For the study of the applications of partial network coding based real-time multicast protocol (PNCRM) in Mobile Ad hoc networks, the researches should be developed in the probability distribution of delay. In this paper, NS2 is used to obtain the delay of data packets through simulations. Because the delay does not obey the strict normal distribution, the maximum likelihood estimate method based on the lognormal distribution is used to process the data. Using MATLAB to obtain the actual distribution of the natural logarithm of delay, then drawing the delay distribution with the maximum likelihood estimation method based on the lognormal distribution, the conclusion that the distributions obtained by the above mentioned methods are basically consistent can be obtained. So the delay distribution of PNCRM meets the lognormal distribution and the characteristic of delay probability distribution can be estimated.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Hassan Tawakol A. Fadol

The purpose of this paper was to identify the values of the parameters of the shape of the binomial, bias one and natural distributions. Using the estimation method and maximum likelihood Method, the criterion of differentiation was used to estimate the shape parameter between the probability distributions and to arrive at the best estimate of the parameter of the shape when the sample sizes are small, medium, The problem was to find the best estimate of the characteristics of the society to be estimated so that they are close to the estimated average of the mean error squares and also the effect of the estimation method on estimating the shape parameter of the distributions at the sizes of different samples In the values of the different shape parameter, the descriptive and inductive method was selected in the analysis of the data by generating 1000 random numbers of different sizes using the simulation method through the MATLAB program. A number of results were reached, 10) to estimate the small shape parameter (0.3) for binomial distributions and Poisson and natural and they can use the Poisson distribution because it is the best among the distributions, and to estimate the parameter of figure (0.5), (0.7), (0.9) Because it is better for binomial binomial distributions, when the size of a sample (70) for a teacher estimate The small figure (0.3) of the binomial and boson distributions and natural distributions can be used for normal distribution because it is the best among the distributions.


Author(s):  
Shuguang Song ◽  
Hanlin Liu ◽  
Mimi Zhang ◽  
Min Xie

In this paper, we propose and study a new bivariate Weibull model, called Bi-levelWeibullModel, which arises when one failure occurs after the other. Under some specific regularity conditions, the reliability function of the second event can be above the reliability function of the first event, and is always above the reliability function of the transformed first event, which is a univariate Weibull random variable. This model is motivated by a common physical feature that arises fromseveral real applications. The two marginal distributions are a Weibull distribution and a generalized three-parameter Weibull mixture distribution. Some useful properties of the model are derived, and we also present the maximum likelihood estimation method. A real example is provided to illustrate the application of the model.


2006 ◽  
Vol 3 (4) ◽  
pp. 1603-1627 ◽  
Author(s):  
W. Wang ◽  
P. H. A. J. M. van Gelder ◽  
J. K. Vrijling ◽  
X. Chen

Abstract. The Lo's R/S tests (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the maximum likelihood estimation method implemented in S-Plus (S-MLE) are evaluated through intensive Mote Carlo simulations for detecting the existence of long-memory. It is shown that, it is difficult to find an appropriate lag q for Lo's test for different AR and ARFIMA processes, which makes the use of Lo's test very tricky. In general, the GPH test outperforms the Lo's test, but for cases where there is strong autocorrelations (e.g., AR(1) processes with φ=0.97 or even 0.99), the GPH test is totally useless, even for time series of large data size. Although S-MLE method does not provide a statistic test for the existence of long-memory, the estimates of d given by S-MLE seems to give a good indication of whether or not the long-memory is present. Data size has a significant impact on the power of all the three methods. Generally, the power of Lo's test and GPH test increases with the increase of data size, and the estimates of d with GPH test and S-MLE converge with the increase of data size. According to the results with the Lo's R/S test (Lo, 1991), GPH test (Geweke and Porter-Hudak, 1983) and the S-MLE method, all daily flow series exhibit long-memory. The intensity of long-memory in daily streamflow processes has only a very weak positive relationship with the scale of watershed.


Sign in / Sign up

Export Citation Format

Share Document