Collateral damage: Spread of repeat-induced point mutation from a duplicated DNA sequence into an adjoining single-copy gene inNeurospora crassa

2005 ◽  
Vol 30 (1) ◽  
pp. 15-20
Author(s):  
Meenal Vyas ◽  
Durgadas P. Kasbekar
Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1093-1103 ◽  
Author(s):  
J T Irelan ◽  
A T Hagemann ◽  
E U Selker

Abstract Duplicated DNA sequences in Neurospora crassa are efficiently detected and mutated during the sexual cycle by a process named repeat-induced point mutation (RIP). Linked, direct duplications have previously been shown to undergo both RIP and deletion at high frequency during premeiosis, suggesting a relationship between RIP and homologous recombination. We have investigated the relationship between RIP and recombination for an unlinked duplication and for both inverted and direct, linked duplications. RIP occurred at high frequency (42-100%) with all three types of duplications used in this study, yet recombination was infrequent. For both inverted and direct, linked duplications, recombination was observed, but at frequencies one to two orders of magnitude lower than RIP. For the unlinked duplication, no recombinants were seen in 900 progeny, indicating, at most, a recombination frequency nearly three orders of magnitude lower than the frequency of RIP. In a direct duplication, RIP and recombination were correlated, suggesting that these two processes are mechanistically associated or that one process provokes the other. Mutations due to RIP have previously been shown to occur outside the boundary of a linked, direct duplication, indicating that RIP might be able to inactivate genes located in single-copy sequences adjacent to a duplicated sequence. In this study, a single-copy gene located between elements of linked duplications was inactivated at moderate frequencies (12-14%). Sequence analysis demonstrated that RIP mutations had spread into these single-copy sequences at least 930 base pairs from the boundary of the duplication, and Southern analysis indicated that mutations had occurred at least 4 kilobases from the duplication boundary.


Author(s):  
R. DROUIN ◽  
G.P. PFEIFER ◽  
S.-W. GAO ◽  
A.D. RIGGS ◽  
G.P. HOLMQUIST

1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Genomics ◽  
1998 ◽  
Vol 48 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Yu-Ker Wang ◽  
Luis A. Pérez-Jurado ◽  
Uta Francke

2021 ◽  
Vol 9 (8) ◽  
pp. 1610
Author(s):  
Christian Klotz ◽  
Elke Radam ◽  
Sebastian Rausch ◽  
Petra Gosten-Heinrich ◽  
Toni Aebischer

Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G. duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of approximately one or below genome equivalent for the multi-copy gene and of about 10 genome equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the specificity. It further identified the underlying Giardia species in four out of 11 samples that could not be typed before by PCR and sequencing. The newly developed workflow has the potential to facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.


1989 ◽  
Vol 9 (1) ◽  
pp. 329-331
Author(s):  
M Winey ◽  
I Edelman ◽  
M R Culbertson

Saccharomyces cerevisiae glutamine tRNA(CAG) is encoded by an intronless, single-copy gene, SUP60. We have imposed a requirement for splicing in the biosynthesis of this tRNA by inserting a synthetic intron in the SUP60 gene. Genetic analysis demonstrated that the interrupted gene produces a functional, mature tRNA product in vivo.


1985 ◽  
Vol 5 (5) ◽  
pp. 1151-1162
Author(s):  
D J Bergsma ◽  
K S Chang ◽  
R J Schwartz

We identified a novel chicken actin gene. The actin protein deduced from its nucleotide sequence very closely resembles the vertebrate cytoplasmic actins; accordingly, we classified this gene as a nonmuscle type. We adopted the convention for indicating the nonmuscle actins of the class Amphibia (Vandekerckhove et al., J. Mol. Biol. 152:413-426) and denoted this gene as type 5. RNA blot analysis demonstrated that the type 5 actin mRNA transcripts accumulate in adult tissues in a pattern indicative of a nonmuscle actin gene. Genomic DNA blots indicated that the type 5 actin is a single copy gene and a distinct member of the chicken actin multigene family. Inspection of the nucleotide sequence revealed many features that distinguished the type 5 gene from all other vertebrate actin genes examined to date. These unique characteristics include: (i) an initiation Met codon preceding an Ala codon, a feature previously known only in plant actins, (ii) a single intron within the 5' untranslated region, with no interruptions in the coding portion of the gene, and (iii) an atypical Goldberg-Hogness box (ATAGAA) preceding the mRNA initiation terminus. These unusual features have interesting implications for actin gene diversification during evolution.


2015 ◽  
Vol 84 ◽  
pp. 205-219 ◽  
Author(s):  
Sebastian Müller ◽  
Karsten Salomo ◽  
Jackeline Salazar ◽  
Julia Naumann ◽  
M. Alejandra Jaramillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document