Mycobacterium leprae mediated stimulation of macrophages from leprosy patients and hydrogen peroxide production

1988 ◽  
Vol 13 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Jolly Marolia ◽  
P. R. Mahadevan
Author(s):  
Kseniya N. Markvicheva ◽  
Ekaterina A. Bogdanova ◽  
Dmitry B. Staroverov ◽  
Sergei Lukyanov ◽  
Vsevolod V. Belousov

1987 ◽  
Vol 18 (1-3) ◽  
pp. 247-256 ◽  
Author(s):  
Jean Chaudiere ◽  
Dominique Gerard ◽  
Michel Clement ◽  
Jean-Marie Bourre

Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444 ◽  
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

Abstract The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 664-672 ◽  
Author(s):  
Iracilda Z. Carlos ◽  
Marcela B. Quilles ◽  
Camila B. A. Carli ◽  
Danielle C. G. Maia ◽  
Fernanda P. Benzatti ◽  
...  

The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H2O2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities


1998 ◽  
Vol 3 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Hideaki Yoshida ◽  
Shoichi Inoue ◽  
Kohki Yoshida ◽  
Osamu Nakajima ◽  
Shigetaka Mizuno

Author(s):  
Kseniya N. Markvicheva ◽  
Ekaterina A. Bogdanova ◽  
Dmitry B. Staroverov ◽  
Sergei Lukyanov ◽  
Vsevolod V. Belousov

2018 ◽  
Vol 18 (18) ◽  
pp. 1550-1558
Author(s):  
Muhammad Aamir ◽  
Asma Sadaf ◽  
Sehroon Khan ◽  
Shagufta Perveen ◽  
Afsar Khan

Background: Many of the tropical diseases are neglected by the researchers and medicinal companies due to lack of profit and other interests. The Drugs for Neglected Diseases initiative (DNDi) is established to overcome the problems associated with these neglected diseases. According to a report published by the WHO, leprosy (Hansen's disease) is also a neglected infectious disease. Methods: A negligible amount of advancements has been made in last few decades which includes the tools of diagnosis, causes, treatment, and genetic studies of the bacterium (Mycobacterium leprae) that causes leprosy. The diagnosis of leprosy at earlier stages is important for its effective treatment. Recent studies on vitamin D and its receptors make leprosy diagnosis easier at earlier stages. Skin biopsies and qPCR are the other tools to identify the disease at its initial stages. Results: Until now a specific drug for the treatment of leprosy is not available, therefore, Multi-Drug Therapy (MDT) is used, which is hazardous to health. Besides Mycobacterium leprae, recently a new bacterium Mycobacterium lepromatosis was also identified as a cause of leprosy. During the last few years the genetic studies of Mycobacterium leprae, the role of vitamin D and vitamin D receptors (VDR), and the skin biopsies made the treatment and diagnosis of leprosy easier at early stages. The studies of micro RNAs (miRNAs) made it easy to differentiate leprosy from other diseases especially from tuberculosis. Conclusion: Leprosy can be distinguished from sarcoidosis by quantitative study of reticulin fibers present in skin. The treatment used until now for leprosy is multi-drug treatment. The complete genome identification of Mycobacterium leprae makes the research easy to develop target specified drugs for leprosy. Rifampicin, identified as a potent drug, along with other drugs in uniform multi-drug treatment, has a significant effect when given to leprosy patients at initial stages. These are effective treatments but a specific drug for leprosy is still needed to be identified. The current review highlights the use of modern methods for the identification of leprosy at its earlier stages and the effective use of drugs alone as well as in combination.


Sign in / Sign up

Export Citation Format

Share Document