scholarly journals Stimulation of hydrogen peroxide production by drinking water contaminants in HL-60 cells sensitized by retinoic acid

1998 ◽  
Vol 3 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Hideaki Yoshida ◽  
Shoichi Inoue ◽  
Kohki Yoshida ◽  
Osamu Nakajima ◽  
Shigetaka Mizuno
Author(s):  
Kseniya N. Markvicheva ◽  
Ekaterina A. Bogdanova ◽  
Dmitry B. Staroverov ◽  
Sergei Lukyanov ◽  
Vsevolod V. Belousov

1987 ◽  
Vol 18 (1-3) ◽  
pp. 247-256 ◽  
Author(s):  
Jean Chaudiere ◽  
Dominique Gerard ◽  
Michel Clement ◽  
Jean-Marie Bourre

Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444 ◽  
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

Abstract The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


Blood ◽  
1977 ◽  
Vol 49 (3) ◽  
pp. 437-444
Author(s):  
MF Tsan ◽  
KH Douglass ◽  
PA McIntyre

The effects of bacterial neuraminidase on production of hydrogen peroxide (H2O2) and killing of Staphylococcus aureus by human polymorphonuclear leukocytes (PMN) were studied. The concentration of H2O2 was measured by the disappearance of scopoletin fluorescence in the presence of horseradish peroxidase. The results indicated that desialylation of human PMN inhibited the stimulation of H2O2 production during phagocytosis. It also markedly impaired the killing of S. aureus. Impaired killing of S. aureus by desialylated PMN was due to impaired intracellular killing rather than defective phagocytosis.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 664-672 ◽  
Author(s):  
Iracilda Z. Carlos ◽  
Marcela B. Quilles ◽  
Camila B. A. Carli ◽  
Danielle C. G. Maia ◽  
Fernanda P. Benzatti ◽  
...  

The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H2O2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities


Author(s):  
Kseniya N. Markvicheva ◽  
Ekaterina A. Bogdanova ◽  
Dmitry B. Staroverov ◽  
Sergei Lukyanov ◽  
Vsevolod V. Belousov

1983 ◽  
Vol 17 (9) ◽  
pp. 394-394 ◽  
Author(s):  
JGMM Smeenk

Author(s):  
Eman A. Al-Rekabi ◽  
Dheyaa K. Alomer ◽  
Rana Talib Al-Muswie ◽  
Khalid G. Al-Fartosi

The present study aimed to investigate the effect of turmeric and ginger on lipid profile of male rats exposed to oxidative stress induced by hydrogen peroxide H2O2 at a concentration of 1% given with consumed drinking water to male rats. Methods: 200 mg/kg from turmeric and ginger were used, and the animals were treatment for 30 days. Results: the results showed a significant increase in cholesterol, triglycerides, low density lipoprotein (LDL), very low density lipoprotein (VLDL), whereas it explained a significant decrease in high density lipoprotein (HDL) of male rats exposed to oxidative stress when compared with control group. the results showed a significant decrease in cholesterol, triglycerides, (LDL), (VLDL), whereas it explained a significant increase in (HDL) of rats treated with turmeric and ginger at dose 200 mg/kg when compared with male rats exposed to oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document