General relativity: Relative standard mass, momentum, energy and gravitational field in a general system of reference

1958 ◽  
Vol 10 (2) ◽  
pp. 318-337 ◽  
Author(s):  
C. Cattaneo
Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter embarks on a study of the two-body problem in general relativity. In other words, it seeks to describe the motion of two compact, self-gravitating bodies which are far-separated and moving slowly. It limits the discussion to corrections proportional to v2 ~ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s universal law of attraction. The chapter first examines the gravitational field, that is, the metric, created by the two bodies. It then derives the equations of motion, and finally the actual motion, that is, the post-Keplerian trajectories, which generalize the post-Keplerian geodesics obtained earlier in the chapter.


2021 ◽  
Vol 34 (2) ◽  
pp. 183-192
Author(s):  
Mei Xiaochun

In general relativity, the values of constant terms in the equations of motions of planets and light have not been seriously discussed. Based on the Schwarzschild metric and the geodesic equations of the Riemann geometry, it is proved in this paper that the constant term in the time-dependent equation of motion of planet in general relativity must be equal to zero. Otherwise, when the correction term of general relativity is ignored, the resulting Newtonian gravity formula would change its basic form. Due to the absence of this constant term, the equation of motion cannot describe the elliptical and the hyperbolic orbital motions of celestial bodies in the solar gravitational field. It can only describe the parabolic orbital motion (with minor corrections). Therefore, it becomes meaningless to use general relativity calculating the precession of Mercury's perihelion. It is also proved that the time-dependent orbital equation of light in general relativity is contradictory to the time-independent equation of light. Using the time-independent orbital equation to do calculation, the deflection angle of light in the solar gravitational field is <mml:math display="inline"> <mml:mrow> <mml:mn>1.7</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> . But using the time-dependent equation to do calculation, the deflection angle of light is only a small correction of the prediction value <mml:math display="inline"> <mml:mrow> <mml:mn>0.87</mml:mn> <mml:msup> <mml:mn>5</mml:mn> <mml:mo>″</mml:mo> </mml:msup> </mml:mrow> </mml:math> of the Newtonian gravity theory with a magnitude order of <mml:math display="inline"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> . The reason causing this inconsistency was the Einstein's assumption that the motion of light satisfied the condition <mml:math display="inline"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>s</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> in gravitational field. It leads to the absence of constant term in the time-independent equation of motion of light and destroys the uniqueness of geodesic in curved space-time. Meanwhile, light is subjected to repulsive forces in the gravitational field, rather than attractive forces. The direction of deflection of light is opposite, inconsistent with the predictions of present general relativity and the Newtonian theory of gravity. Observing on the earth surface, the wavelength of light emitted by the sun is violet shifted. This prediction is obviously not true. Practical observation is red shift. Finally, the practical significance of the calculation of the Mercury perihelion's precession and the existing problems of the light's deflection experiments of general relativity are briefly discussed. The conclusion of this paper is that general relativity cannot have consistence with the Newtonian theory of gravity for the descriptions of motions of planets and light in the solar system. The theory itself is not self-consistent too.


1984 ◽  
Vol 52 (5) ◽  
pp. 478-479
Author(s):  
Hans Stephani ◽  
Jeffrey M. Bowen

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


2010 ◽  
Vol 19 (14) ◽  
pp. 2353-2359 ◽  
Author(s):  
F. I. COOPERSTOCK ◽  
M. J. DUPRE

In this essay, we introduce a new approach to energy–momentum in general relativity. Space–time, as opposed to space, is recognized as the necessary arena for its examination, leading us to define new extended space–time energy and momentum constructs. From local and global considerations, we conclude that the Ricci tensor is the required element for a localized expression of energy–momentum to include the gravitational field. We present and rationalize a fully invariant extended expression for space–time energy, guided by Tolman's well-known energy integral for an arbitrary bounded stationary system. This raises fundamental issues which we discuss. The role of the observer emerges naturally and we are led to an extension of the uncertainty principle to general relativity, of particular relevance to ultra-strong gravity.


Author(s):  
Jin Tong Wang ◽  
Jiangdi Fan ◽  
Aaron X. Kan

It has been well known that there is a redshift of photon frequency due to the gravitational potential. Scott et al. [Can. J. Phys. 44 (1966) 1639, https://doi.org/10.1139/p66-137 ] pointed out that general relativity theory predicts the gravitational redshift. However, using the quantum mechanics theory related to the photon Hamiltonian and photon Schrodinger equation, we calculate the redshift due to the gravitational potential. The result is exactly the same as that from the general relativity theory.


Author(s):  
Hanoch Gutfreund ◽  
Jürgen Renn

This chapter shows how Einstein has developed and described the mathematical apparatus that is necessary to formulate the physical contents of the general theory of gravity. It first discusses the transition from the special to the general relativity principle. According to Einstein's understanding of such a general relativity principle, physical laws are independent of the state of motion of the reference space in which they are described. The chapter argues that such a generalization of the relativity principle to include accelerated reference frames is possible because all inertial effects caused by acceleration can be alternatively attributed to the presence of a gravitational field. The model of a rotating disk is then used to show that general relativity implies non-Euclidean geometry and that the gravitational field is represented by curved spacetime. After the introduction of these basic concepts and principles, the chapter presents the mathematical formulation of the theory.


2020 ◽  
pp. 41-70
Author(s):  
Dean Rickles

In this chapter we examine the very earliest work on the problem of quantum gravity (understood very liberally). We show that, even before the concept of the quantization of the gravitational field in 1929, there was a fairly lively investigation of the relationships between gravity and quantum stretching as far back as 1916, and certainly no suggestion that such a theory would not be forthcoming. Indeed, there are, rather, many suggestions explicitly advocating that an integration of quantum theory and general relativity (or gravitation, at least) is essential for future physics, in order to construct a satisfactory foundation. We also see how this belief was guided by a diverse family of underlying agendas and constraints, often of a highly philosophical nature.


2012 ◽  
Vol 86 (6) ◽  
Author(s):  
Kuantay Boshkayev ◽  
Hernando Quevedo ◽  
Remo Ruffini

Author(s):  
Katherine Blundell

‘Characterizing black holes’ describes the two different types of black holes: Schwarzschild black holes that do not rotate and Kerr black holes that do. The only distinguishing characteristics of black holes are their mass and their spin. A remarkable feature of a spinning black hole is that the gravitational field pulls objects around the black hole’s axis of rotation, not merely in towards its centre—an effect called frame dragging. The static limit and ergosphere regions of black holes are also described. Einstein’s equations of General Relativity allow many different solutions describing alternative versions of curved spacetime. Could white holes and worm holes exist in our universe?


Sign in / Sign up

Export Citation Format

Share Document