A simple purification procedure of biologically active recombinant human granulocyte macrophage colony stimulating factor (hGM-CSF) secreted in rice cell suspension culture

2004 ◽  
Vol 9 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Niti Sharma ◽  
Seung-Moon Park ◽  
Tae-Ho Kwon ◽  
Dae-Hyuk Kim ◽  
Moon-Sik Yang
Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 313-316 ◽  
Author(s):  
T Hoang ◽  
N Nara ◽  
G Wong ◽  
S Clark ◽  
MD Minden ◽  
...  

The effects of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) were compared to those of media conditioned by the continuous bladder carcinoma line, HTB9 (HTB9-CM), using three criteria. First, both GM-CSF and HTB9-CM stimulated blast colony formation in methylcellulose cultures, patient-to-patient variations were seen in the dose-response curves, and GM-CSF was effective, but less so that HTB9-CM. Second, GM-CSF also enhanced growth of blast progenitors in suspension culture, indicating its capacity to support self-renewal. GM-CSF was as effective as HTB9-CM in the production of adherent cells during the growth of blast cells in suspension, a finding that is interpreted to mean that GM-CSF also supports postdeterministic events in blast differentiation. Finally, colonies growing in the presence of GM-CSF were not phenotypically different than those stimulated by HTB9-CM.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1308-1314 ◽  
Author(s):  
J Stein ◽  
GV Borzillo ◽  
CW Rettenmier

Secreted forms of macrophage colony-stimulating factor (M-CSF or CSF-1) are generated by proteolytic cleavage of membrane-bound glycoprotein precursors. Alternatively spliced transcripts of the human CSF-1 gene encode at least two different transmembrane precursors that are differentially processed in mammalian expression systems. The larger precursor rapidly undergoes proteolysis to yield the secreted growth factor and does not give rise to forms of CSF-1 detected on the cell surface. By contrast, the smaller human CSF-1 precursor is stably expressed on the plasma membrane where it is inefficiently cleaved to release a soluble molecule. To determine whether the smaller precursor is biologically active on the cell surface, mouse NIH-3T3 fibroblasts expressing the different forms of human CSF-1 were killed by chemical fixation and tested for their ability to support the proliferation of cells that require this growth factor. Only fixed cells expressing human CSF-1 precursors on their surface stimulated the growth in vitro of a murine macrophage cell line or normal mouse bone marrow-derived mononuclear phagocytes. The ability of these nonviable fibroblasts to induce the proliferation of CSF-1-dependent cells was not mediated by release of soluble growth factor, required direct contact with the target cells, and was blocked by neutralizing antiserum to CSF-1. These results demonstrate that the cell surface form of the human CSF-1 precursor is biologically active and indicate that plasma membrane- bound growth factors can functionally interact with receptor-bearing targets by direct cell-cell contact.


Blood ◽  
1995 ◽  
Vol 86 (11) ◽  
pp. 4234-4242 ◽  
Author(s):  
MA Williams ◽  
I Kouroumoussis ◽  
D Syndercombe-Court ◽  
L Hendry ◽  
AC Newland ◽  
...  

Monocyte expression and secretion of tumor necrosis factor (TNF) and TNF receptors (TNF-R) p55 and p75 was studied in patients receiving granulocyte-macrophage colony-stimulating factor (GM-CSF) after intensive chemotherapy. TNF expression and secretion of biologically active TNF was increased at regeneration compared with that of patients who had received chemotherapy alone. This effect persisted for several weeks after cessation of growth factor therapy. GM-CSF restored the responsiveness of monocytes to bacterial lipopolysaccharide (LPS), which appeared to be diminished after chemotherapy alone. Expression and secretion of TNF-R p55 and p75 by monocytes was augmented by GM-CSF therapy in association with the increase in TNF protein. We propose that GM-CSF administration after chemotherapy restores the normal responsiveness of monocytes to a secondary stimulus such as LPS and primes monocytes to respond to LPS with increased expression and secretion of TNF and TNF-R.


Sign in / Sign up

Export Citation Format

Share Document