Modelling of variability in chloroplast number of stomatal guard cells of sugar beet

Sugar Tech ◽  
2001 ◽  
Vol 3 (1-2) ◽  
pp. 13-17 ◽  
Author(s):  
S. I. Maletskii
HortScience ◽  
1998 ◽  
Vol 33 (5) ◽  
pp. 889-890 ◽  
Author(s):  
A. Tenkouano ◽  
J.H. Crouch ◽  
H.K. Crouch ◽  
D. Vuylsteke

We attempted to determine ploidy level in the gametophyte and the sporophyte of Musa using pollen and chloroplast characteristics, respectively. In the gametophyte, interploidy differences accounted for 63.8% of the genetic variance for pollen diameter and 87.5% for pollen stainability, the remainder being attributable to intraploidy differences among clones. While pollen count and stainability effectively separated triploid accessions from diploids or tetraploids, they did not discriminate between diploids and tetraploids. In the sporophyte, the relative contributions of interploidy and intraploidy differences to genetic variation in the number of chloroplasts in stomatal guard cells were 70.8% and 29.2%, respectively. Although pollen diameter and chloroplast number increased with ploidy, the use of the sporophytic parameter appears to provide a more satisfactory means of estimating ploidy status in Musa.


1996 ◽  
Vol 134 (3) ◽  
pp. 463-469 ◽  
Author(s):  
D. L. R. SILVA ◽  
SARAH J. HONOUR ◽  
T. A. MANSFIELD

2015 ◽  
Vol 25 (7) ◽  
pp. 928-935 ◽  
Author(s):  
Christof Lind ◽  
Ingo Dreyer ◽  
Enrique J. López-Sanjurjo ◽  
Katharina von Meyer ◽  
Kimitsune Ishizaki ◽  
...  

2001 ◽  
Vol 44 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Maria das Graças Sajo ◽  
Silvia Rodrigues Machado

The leaf ultrastructure of five Xyris species were examined using scanning electron microscope (SEM), transmission electron microscope (TEM) and histochemical methods. All studied leaves show some features in epidermis and mesophyll, which were of considerable adaptative significance to drought stress. Such features included the occurrence of a pectic layer on the stomatal guard cells and the presence of a network of pectic compounds in the cuticle. Pectic compunds were also in abundance in lamellated walls of the mesophyll cells and on the inner surface of the sclerified cell walls of the vascular bundle sheaths. There were also specialized chlorenchymatous "peg cells" in the mesophyll and drops of phenolic compounds inside the epidermal cells.


2011 ◽  
Vol 52 (7) ◽  
pp. 1238-1248 ◽  
Author(s):  
Maki Hayashi ◽  
Shin-ichiro Inoue ◽  
Koji Takahashi ◽  
Toshinori Kinoshita

2013 ◽  
Vol 64 (12) ◽  
pp. 3551-3566 ◽  
Author(s):  
Sasan Aliniaeifard ◽  
Uulke van Meeteren

2020 ◽  
Vol 21 (7) ◽  
pp. 2331
Author(s):  
Fatemeh Rasouli ◽  
Ali Kiani-Pouya ◽  
Leiting Li ◽  
Heng Zhang ◽  
Zhonghua Chen ◽  
...  

Soil salinity is a major environmental constraint affecting crop growth and threatening global food security. Plants adapt to salinity by optimizing the performance of stomata. Stomata are formed by two guard cells (GCs) that are morphologically and functionally distinct from the other leaf cells. These microscopic sphincters inserted into the wax-covered epidermis of the shoot balance CO2 intake for photosynthetic carbon gain and concomitant water loss. In order to better understand the molecular mechanisms underlying stomatal function under saline conditions, we used proteomics approach to study isolated GCs from the salt-tolerant sugar beet species. Of the 2088 proteins identified in sugar beet GCs, 82 were differentially regulated by salt treatment. According to bioinformatics analysis (GO enrichment analysis and protein classification), these proteins were involved in lipid metabolism, cell wall modification, ATP biosynthesis, and signaling. Among the significant differentially abundant proteins, several proteins classified as “stress proteins” were upregulated, including non-specific lipid transfer protein, chaperone proteins, heat shock proteins, inorganic pyrophosphatase 2, responsible for energized vacuole membrane for ion transportation. Moreover, several antioxidant enzymes (peroxide, superoxidase dismutase) were highly upregulated. Furthermore, cell wall proteins detected in GCs provided some evidence that GC walls were more flexible in response to salt stress. Proteins such as L-ascorbate oxidase that were constitutively high under both control and high salinity conditions may contribute to the ability of sugar beet GCs to adapt to salinity by mitigating salinity-induced oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document