On the adaptive estimation of change points

Author(s):  
Ts. G. Hahubia
Author(s):  
Marius Ötting ◽  
Roland Langrock ◽  
Antonello Maruotti

AbstractWe investigate the potential occurrence of change points—commonly referred to as “momentum shifts”—in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state dependence of the variables, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.


Measurement ◽  
2021 ◽  
Vol 174 ◽  
pp. 109035
Author(s):  
Xuxing Zhao ◽  
Renjian Feng ◽  
Yinfeng Wu ◽  
Ning Yu ◽  
Xiaofeng Meng ◽  
...  

Inventions ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
Sergey Sokolov ◽  
Arthur Novikov ◽  
Marianna Polyakova

In measurement systems operating under various disturbances the probabilistic characteristics of measurement noises are usually known approximately. To improve the observation accuracy, a new approach to the Kalman’s filter adaptation is proposed. In this approach, the Covariance Matrix of Measurement Noises (CMMN) is estimated by accurate measurements detected irregularly by the mobile object observation system (from radiofrequency identifiers, etalon reference, fixed points etc.). The problem of adaptive estimation of the observer’s noises covariance matrix in the Kalman filter is solved analytically for two cases: mutual noises correlation, and its absence. The numerical example for adaptive filtration of complexing navigation system parameters of a mobile object using irregular accurate measurements is given to illustrate the effectiveness of the proposed algorithm. Coordinate estimating errors have changed in comparison with the traditional scheme from 100 m to 2 m in latitude, and from 200 m to 1.5 m in longitude.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


Sign in / Sign up

Export Citation Format

Share Document