Dusty LBV nebulae: Tracing the mass loss history of the most massive stars

Author(s):  
Laurens B. F. M. Waters ◽  
Robert H. M. Voors ◽  
Patrick W. Morris ◽  
Norman R. Trams ◽  
Alex de Koter ◽  
...  
Keyword(s):  
1981 ◽  
Vol 59 ◽  
pp. 229-253
Author(s):  
C. Chiosi

In the past few years both growing observational evidence and theoretical understanding have shown that mass loss by stellar wind is a common occurrence in the evolutionary history of many types of star. Recent reviews on the subject may be found in Conti (1978), Cassinelli (1979), Conti and Mc Cray (1980), Hutchings (1980a), de Loore (1979, 1980) and Sreenivasan (1979).Therefore, in this paper we will concentrate only on those observational and theoretical aspects of the problem that demand further investigation.


1999 ◽  
Vol 193 ◽  
pp. 177-186 ◽  
Author(s):  
André Maeder

We give results of models of massive stars which have a detailed physical treatment of rotation, including structural equations for shellular rotation, new treatments of shears in differentially rotating stars and of meridional circulation, together with mass loss rates depending on rotation. For a 20 M⊙ star, He- and N-enrichments at the stellar surface already occur during the MS phase for moderately low rotational velocities, thus most supergiants are enriched in helium and nitrogen. A long B- and A-supergiant phase results from rotational mixing, with some primary nitrogen formed at this stage. For the most massive stars, rotation makes the star to enter the WR stage during the MS phase thus avoiding the LBV and red supergiant stage.The WR life-times are considerably increased by rotation and the minimum mass for forming WR stars is lowered. Interestingly enough, the increase of the WN life-time is larger than for WC stars, so that rotation leads to a decrease of the WC/WN number ratio. Also, the fraction of transition WN/WC stars is much larger at higher rotation.Finally, on the basis of clusters in the SMC, in the LMC and towards the galactic interior and exterior, we show that for clusters with ages between about 1 and 3 x 107 yr the fraction of Be stars with respect to normal B stars is larger at lower metallicities. This may suggest a higher rotation at lower metallicities for massive stars, due to a different history of star formation.


1999 ◽  
Vol 193 ◽  
pp. 306-315 ◽  
Author(s):  
Anthony P. Marston

The environments of evolved massive stars provide an opportunity of obtaining information on the past, as well as current, condition of the stars themselves. In this review we will look at the incidence of ring nebulae around Wolf-Rayet stars, their differing morphologies at various wavelengths and the existence of multiple, concentric shells. We use this information to show that WRs are indeed evolved stars and that the various phases of evolution for a WR star are evidenced in their environments. Abundance measurements and kinematics show that complex forms of mass ejection are likely to have occurred in the evolution of WR stars providing clumpy structures of dust, and both ionized and neutral gas. Gas kinematics also provide estimates to the time-scales of each of the evolutionary phases of WR stars, which can be combined with estimates of nebular masses to provide the approximate values for such crucial parameters as total mass-loss and historical mass-loss rates. Overall, it is illustrated that studies of the environments of WR stars have the potential to provide important information about the mass-loss history of very massive stars, including estimates of the time period of each mass-loss phase, typical mass loss rates, total mass lost and likely evolutionary path. Some of the remaining problems relating to the use of ring nebulae as probes to the evolutionary history of WR stars are also discussed.


1996 ◽  
Vol 145 ◽  
pp. 137-147
Author(s):  
S. E. Woosley ◽  
T. A. Weaver ◽  
R. G. Eastman

We review critical physics affecting the observational characteristics of those supernovae that occur in massive stars. Particular emphasis is given to 1) how mass loss, either to a binary companion or by a radiatively driven wind, affects the type and light curve of the supernova, and 2) the interaction of the outgoing supernova shock with regions of increasing pr3 in the stellar mantle. One conclusion is that Type II-L supernovae may occur in mass exchanging binaries very similar to the one that produced SN 1993J, but with slightly larger initial separations and residual hydrogen envelopes (∼1 Mʘ and radius ∼ several AU). The shock interaction, on the other hand, has important implications for the formation of black holes in explosions that are, near peak light, observationally indistinguishable from ordinary Type II-p and lb supernovae.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Kris Davidson

Very massive stars occasionally expel material in colossal eruptions, driven by continuum radiation pressure rather than blast waves. Some of them rival supernovae in total radiative output, and the mass loss is crucial for subsequent evolution. Some are supernova impostors, including SN precursor outbursts, while others are true SN events shrouded by material that was ejected earlier. Luminous Blue Variable stars (LBV’s) are traditionally cited in relation with giant eruptions, though this connection is not well established. After four decades of research, the fundamental causes of giant eruptions and LBV events remain elusive. This review outlines the basic relevant physics, with a brief summary of essential observational facts. Reasons are described for the spectrum and emergent radiation temperature of an opaque outflow. Proposed mechanisms are noted for instabilities in the star’s photosphere, in its iron opacity peak zones, and in its central region. Various remarks and conjectures are mentioned, some of them relatively unfamiliar in the published literature.


2016 ◽  
Vol 12 (S329) ◽  
pp. 279-286
Author(s):  
Jorick S. Vink ◽  
C.J. Evans ◽  
J. Bestenlehner ◽  
C. McEvoy ◽  
O. Ramírez-Agudelo ◽  
...  

AbstractWe present a number of notable results from the VLT-FLAMES Tarantula Survey (VFTS), an ESO Large Program during which we obtained multi-epoch medium-resolution optical spectroscopy of a very large sample of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). This unprecedented data-set has enabled us to address some key questions regarding atmospheres and winds, as well as the evolution of (very) massive stars. Here we focus on O-type runaways, the width of the main sequence, and the mass-loss rates for (very) massive stars. We also provide indications for the presence of a top-heavy initial mass function (IMF) in 30 Dor.


2018 ◽  
Vol 613 ◽  
pp. A75 ◽  
Author(s):  
P. Kurfürst ◽  
A. Feldmeier ◽  
J. Krtička

Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims. We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk’s inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods. Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2∕3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe’s method, both including full second-order Navier-Stokes shear viscosity. Results. Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10−10 M⊙ yr−1. In the models of dense viscous disks with Ṁ > 10−8 M⊙ yr−1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions. The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.


2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


Sign in / Sign up

Export Citation Format

Share Document