scholarly journals Inclusive prompt photon-jet correlations as a probe of gluon saturation in electron-nucleus scattering at small x

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Isobel Kolbe ◽  
Kaushik Roy ◽  
Farid Salazar ◽  
Björn Schenke ◽  
Raju Venugopalan

Abstract We compute the differential cross-section for inclusive prompt photon+quark production in deeply inelastic scattering of electrons off nuclei at small x (e + A DIS) in the framework of the Color Glass Condensate effective field theory. The result is expressed as a convolution of the leading order (in the strong coupling αs) impact factor for the process and universal dipole matrix elements, in the limit of hard photon transverse momentum relative to the nuclear saturation scale Qs,A(x). We perform a numerical study of this process for the kinematics of the Electron-Ion Collider (EIC), exploring in particular the azimuthal angle correlations between the final state photon and quark. We observe a systematic suppression and broadening pattern of the back-to-back peak in the relative azimuthal angle distribution, as the saturation scale is increased by replacing proton targets with gold nuclei. Our results suggest that photon+jet final states in inclusive e + A DIS at high energies are in general a promising channel for exploring gluon saturation that is complementary to inclusive and diffractive dijet production. They also provide a sensitive empirical test of the universality of dipole matrix elements when compared to identical measurements in proton-nucleus collisions. However because photon+jet correlations at small x in EIC kinematics require jet reconstruction at small k⊥, it will be important to study their feasibility relative to photon-hadron correlations.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Hirotsugu Fujii ◽  
Cyrille Marquet ◽  
Kazuhiro Watanabe

Abstract For studying small-x gluon saturation in forward dijet production in high-energy dilute-dense collisions, the improved TMD (ITMD) factorization formula was recently proposed. In the Color Glass Condensate (CGC) framework, it represents the leading term of an expansion in inverse powers of the hard scale. It contains the leading-twist TMD factorization formula relevant for small gluon’s transverse momentum kt, but also incorporates an all-order resummation of kinematical twists, resulting in a proper matching to high-energy factorization at large kt. In this paper, we evaluate the accuracy of the ITMD formula quantitatively, for the case of quark dijet production in high-energy proton-proton(p+p) and proton-nucleus (p+A) collisions at LHC energies. We do so by comparing the quark-antiquark azimuthal angle ∆ϕ distribution to that obtained with the CGC formula. For a dijet with each quark momentum pt much larger than the target saturation scale, Qs, the ITMD formula is a good approximation to the CGC formula in a wide range of azimuthal angle. It becomes less accurate as the jet pt’s are lowered, as expected, due to the presence of genuine higher-twists contributions in the CGC framework, which represent multi-body scattering effects absent in the ITMD formula. We find that, as the hard jet momenta are lowered, the accuracy of ITMD start by deteriorating at small angles, in the high-energy-factorization regime, while in the TMD regime near ∆ϕ = π, very low values of pt are needed to see differences between the CGC and the ITMD formula. In addition, the genuine twists corrections to ITMD become visible for higher values of pt in p + A collisions, compared to p+p collisions, signaling that they are enhanced by the target saturation scale.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Renaud Boussarie ◽  
Heikki Mäntysaari ◽  
Farid Salazar ◽  
Björn Schenke

Abstract We compute the differential yield for quark anti-quark dijet production in high-energy electron-proton and electron-nucleus collisions at small x as a function of the relative momentum P⊥ and momentum imbalance k⊥ of the dijet system for different photon virtualities Q2, and study the elliptic and quadrangular anisotropies in the relative angle between P⊥ and k⊥. We review and extend the analysis in [1], which compared the results of the Color Glass Condensate (CGC) with those obtained using the transverse momentum dependent (TMD) framework. In particular, we include in our comparison the improved TMD (ITMD) framework, which resums kinematic power corrections of the ratio k⊥ over the hard scale Q⊥. By comparing ITMD and CGC results we are able to isolate genuine higher saturation contributions in the ratio Qs/Q⊥ which are resummed only in the CGC. These saturation contributions are in addition to those in the Weizsäcker-Williams gluon TMD that appear in powers of Qs/k⊥. We provide numerical estimates of these contributions for inclusive dijet production at the future Electron-Ion Collider, and identify kinematic windows where they can become relevant in the measurement of dijet and dihadron azimuthal correlations. We argue that such measurements will allow the detailed experimental study of both kinematic power corrections and genuine gluon saturation effects.


Author(s):  
M. B. Flathers ◽  
G. E. Bache ◽  
R. Rainsberger

The flowfield of a complex three dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully 3D viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data has been used to verify the computational results. The paper will discuss experimental, design and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule and cost and can be applied to complex, three dimensional radial inlets.


1999 ◽  
Vol 9 (9) ◽  
pp. 2051-2080 ◽  
Author(s):  
Takahiro Matsumoto ◽  
Atsuo Fukuda ◽  
Masahiro Johno ◽  
Yuki Motoyama ◽  
Tomoyuki Yui ◽  
...  

We have studied the frustration between ferro- and antiferro-electricity in chiral smectic C like liquid crystalline phases, which is not only fundamentally interesting but also very attractive from an application point of view. It causes temperature induced successive phase transitions as characterized by a devil's staircase and the thresholdless, hysteresis-free, V-shaped switching induced by an applied electric field. The devil's staircase indicates some type of interlayer ordering, while the V-shaped switching suggests considerably diminished tilting correlation. These two are apparently contradictory to each other, but result from the same cause, i.e. the frustration. We have first summarized experimental facts regarding subphases and successive phase transitions observed in many compounds and mixtures, which we believe are related to one another and result from the frustration. We have introduced several different theoretical explanations for these observed facts, and shown that only the axial next nearest neighbor Ising (ANNNI) model can explain almost all of the facts, provided that it is unified with the XY model appropriately. The unified model can make a comprehensive explanation in the most natural way based on the most probable molecular interactions. We have then emphasised that there are several modes regarding the V-shaped switching, because the system becomes so soft with respect to the tilting direction and sense that any additional external or internal force modifies the in-plane local director alignments. For the practically usable ones, we have emphasised the need for some type of randomization in the molecular alignment at the tip of the V and/or the switching process. In particular, the two dimensional (ideally, cylindrically symmetric) azimuthal angle distribution of local in-plane directors around the smectic layer normal is most attractive. Such a randomized state at the tip of the V is thermodynamically unique under a given condition imposed by interfaces. It stays stable even when the smectic layer structure, such as a chevron, changes with temperature. Finally, we have summarized the so-far reported compounds and mixtures for the V-shaped switching and introduced some prototypes of LCDs using them.


Author(s):  
Dilip Prasad ◽  
Gavin J. Hendricks

The flow field in a low-speed turbine stage with a uniform inlet total pressure is studied numerically. A circular hot streak is superposed on the vane inlet flow. In agreement with previous experimental and numerical work, it is observed that while the streak passes through the vane unaltered, significant radial transport occurs in the rotor. Furthermore, despite the unsteady nature of the flow field, the steady theory of Hawthorne (1974) is found to predict the radial transport velocity well. Making use of this theory, it is shown that the secondary vorticity in the rotor may be attributed to the effects of density stratification, the spatial variation of the vane exit flow angle and the relative eddy. It then follows that the extent of radial transport in the rotor may be influenced by altering the vane exit flow angle distribution. The present study examines one means by which this may be effected, viz., varying the vane twist across the span. It is shown that a “reverse” twist, wherein the flow angle at the vane exit is larger near the tip than it is at mid-span reduces the secondary flow (and consequently, radial transport) in the blade passage. On the other hand, “positive” twist, in which the vane exit flow angle decreases with span is found to markedly worsen the radial transport in the blade. It is to be noted that varying the vane twist is but one method to obtain the desired exit flow angle; possibilities for altering other aspects of the vane geometry also exist.


2000 ◽  
Vol 122 (4) ◽  
pp. 667-673 ◽  
Author(s):  
Dilip Prasad ◽  
Gavin J. Hendricks

The flow field in a low-speed turbine stage with a uniform inlet total pressure is studied numerically. A circular hot streak is superposed on the vane inlet flow. In agreement with previous experimental and numerical work, it is observed that while the streak passes through the vane unaltered, significant radial transport occurs in the rotor. Furthermore, despite the unsteady nature of the flow field, the steady theory of Hawthorne (1974) is found to predict the radial transport velocity well. Making use of this theory, it is shown that the secondary vorticity in the rotor may be attributed to the effects of density stratification, the spatial variation of the vane exit flow angle, and the relative eddy. It then follows that the extent of radial transport in the rotor may be influenced by altering the vane exit flow angle distribution. The present study examines one means by which this may be effected, viz., varying the vane twist across the span. It is shown that a “reverse” twist, wherein the flow angle at the vane exit is larger near the tip than it is at midspan, reduces the secondary flow (and consequently, radial transport) in the blade passage. On the other hand, “positive” twist, in which the vane exit flow angle decreases with span, is found to worsen the radial transport in the blade markedly. It is to be noted that varying the vane twist is but one method to obtain the desired exit flow angle; possibilities for altering other aspects of the vane geometry also exist. [S0889-504X(00)00104-5]


Author(s):  
Sachin Singh Rawat ◽  
B. V. S. S. S. Prasad

Abstract A detailed three-dimensional steady-state numerical investigation using ANSYS CFX-18.2 on a high-pressure turbine blade with linear cascade is done for tip leakage flow of an axial gas turbine. Stationary casing with a fixed blade having tip gap is considered for the present study. There is leakage flow from the pressure side to the suction side of the blade which consecutively rolls up in the passage and forms the tip leakage vortex. The formation of vortices and their interaction with each other inside the passage is complex which makes experimental investigation difficult. The effect of tip gap size, off-design incidence angles, outlet Mach number, pitch size and flow path (stagger angle) are several parameters considered during the present study. The strength of tip leakage vortex and the vortex formed inside the gap is maximum. The losses are compared in terms of total pressure loss coefficient. The deviation of the flow direction is measured in terms of yaw angle distribution. Among various turbulence model available in CFX 18.2 the BSL k-ω turbulence model shows the most reliable results with experimental data. The results are compared with the base model without the tip gap. This investigation incites a better design of the blade tip with a precise reduction in losses.


Sign in / Sign up

Export Citation Format

Share Document