scholarly journals Neutrino masses, vacuum stability and quantum gravity prediction for the mass of the top quark

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guillem Domènech ◽  
Mark Goodsell ◽  
Christof Wetterich

Abstract A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson MH and the top quark Mt. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed MH∼ 125 GeV results in the prediction for the top quark mass Mt∼ 171 GeV, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of an SU(2) triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to Mt ∼ 172.5 GeV for a triplet mass of M∆ ∼ 108GeV. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of Mt due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.

2011 ◽  
Vol 20 (supp01) ◽  
pp. 245-253
Author(s):  
ALEJANDRO CABO ◽  
MATTS ROOS ◽  
ENCIEH ERFANI

The extension of study done in a previous work about the dilaton mean field stabilization thanks to the potential generated by massive fermions, is reviewed. Three loop corrections were evaluated in addition to the previously calculated two loop terms. The results indicate that the dilaton vacuum field tend to be fixed at a high value close to the Planck scale, in accordance with the need for predicting Einstein gravity from string theory. Moreover, the mass of the dilaton is evaluated to be also a high value close to the Planck mass, which implies the absence of dilaton scalar signals in modern cosmological observations. These properties arise when the fermion mass is chosen to be either at a lower bound corresponding to the top quark mass, or alternatively, at a very much higher value assumed to be in the grand unification energy range.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
David Dunsky ◽  
Lawrence J. Hall ◽  
Keisuke Harigaya

Abstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (109-1012) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 1012 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Long Chen ◽  
Gudrun Heinrich ◽  
Stephen P. Jones ◽  
Matthias Kerner ◽  
Jonas Klappert ◽  
...  

Abstract We present results for the two-loop helicity amplitudes entering the NLO QCD corrections to the production of a Higgs boson in association with a Z -boson in gluon fusion. The two-loop integrals, involving massive top quarks, are calculated numerically. Results for the interference of the finite part of the two-loop amplitudes with the Born amplitude are shown as a function of the two kinematic invariants on which the amplitudes depend.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 45
Author(s):  
Christof Wetterich

We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing “cosmological constant” or dynamical dark energy.


2020 ◽  
Vol 44 (9) ◽  
pp. 091001
Author(s):  
Wan-Li Ju ◽  
Guoxing Wang ◽  
Xing Wang ◽  
Xiaofeng Xu ◽  
Yongqi Xu ◽  
...  

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Nowak ◽  
A.F. Żarnecki

Abstract One of the important goals at the future e+e− colliders is to measure the top-quark mass and width in a scan of the pair production threshold. However, the shape of the pair-production cross section at the threshold depends also on other model parameters, as the top Yukawa coupling, and the measurement is a subject to many systematic uncertainties. Presented in this work is the study of the top-quark mass determination from the threshold scan at CLIC. The most general approach is used with all relevant model parameters and selected systematic uncertainties included in the fit procedure. Expected constraints from other measurements are also taken into account. It is demonstrated that the top-quark mass can be extracted with precision of the order of 30 to 40 MeV, including considered systematic uncertainties, already for 100 fb−1 of data collected at the threshold. Additional improvement is possible, if the running scenario is optimised. With the optimisation procedure based on the genetic algorithm the statistical uncertainty of the mass measurement can be reduced by about 20%. Influence of the collider luminosity spectra on the expected precision of the measurement is also studied.


Sign in / Sign up

Export Citation Format

Share Document