scholarly journals Effective Scalar Potential in Asymptotically Safe Quantum Gravity

Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 45
Author(s):  
Christof Wetterich

We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing “cosmological constant” or dynamical dark energy.

2018 ◽  
Vol 168 ◽  
pp. 06002
Author(s):  
Aditya Aravind ◽  
Minglei Xiao ◽  
Jiang-Hao Yu

We discuss the inflationary model presented in [1], involving a gauge singlet scalar field and fermionic dark matter added to the standard model. Either the Higgs or the singlet scalar could play the role of the inflaton, and slow roll is realized through its non-minimal coupling to gravity. The effective scalar potential is stabilized by the mixing between the scalars as well as the coupling with the fermionic field. Mixing of the two scalars also provides a portal to dark matter. Constraints on the model come from perturbativity and stability, collider searches and dark matter constraints and impose a constraining relationship on the masses of dark matter and scalar fields. Inflationary predictions are generically consistent with current Planck data.


2017 ◽  
Vol 32 (34) ◽  
pp. 1746001 ◽  
Author(s):  
John Ellis

The answer to the question in the title is: in search of new physics beyond the Standard Model, for which there are many motivations, including the likely instability of the electroweak vacuum, dark matter, the origin of matter, the masses of neutrinos, the naturalness of the hierarchy of mass scales, cosmological inflation and the search for quantum gravity. So far, however, there are no clear indications about the theoretical solutions to these problems, nor the experimental strategies to resolve them. It makes sense now to prepare various projects for possible future accelerators, so as to be ready for decisions when the physics outlook becomes clearer. Paraphrasing George Harrison, “If you don’t yet know where you’re going, any road may take you there.”


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Guillem Domènech ◽  
Mark Goodsell ◽  
Christof Wetterich

Abstract A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson MH and the top quark Mt. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed MH∼ 125 GeV results in the prediction for the top quark mass Mt∼ 171 GeV, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of an SU(2) triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to Mt ∼ 172.5 GeV for a triplet mass of M∆ ∼ 108GeV. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of Mt due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.


2019 ◽  
Vol 64 (8) ◽  
pp. 714
Author(s):  
T. V. Obikhod ◽  
I. A. Petrenko

The problems of the Standard Model, as well as questions related to Higgs boson properties led to the need to model the ttH associated production and the Higgs boson decay to a top quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia, and Delphes and using the latest kinematic cuts taken from experimental data obtained at the LHC, we have predicted the masses of MSSM Higgs bosons, A and H.


2016 ◽  
Vol 25 (14) ◽  
pp. 1650106
Author(s):  
Deloshan Nawarajan ◽  
Matt Visser

Under normal circumstances most members of the general relativity community focus almost exclusively on the local properties of spacetime, such as the locally Euclidean structure of the manifold and the Lorentzian signature of the metric tensor. When combined with the classical Einstein field equations this gives an extremely successful empirical model of classical gravity and classical matter — at least as long as one does not ask too many awkward questions about global issues, (such as global topology and global causal structure). We feel however that this is a tactical error — even without invoking full-fledged “quantum gravity” we know that the standard model of particle physics is also an extremely good representation of some parts of empirical reality; and we had better be able to carry over all the good features of the standard model of particle physics — at least into the realm of semi-classical quantum gravity. Doing so gives us some interesting global features that spacetime should possess: On physical grounds spacetime should be space-orientable, time-orientable, and spacetime-orientable, and it should possess a globally defined tetrad (vierbein, or in general a globally defined vielbein/[Formula: see text]-bein). So on physical grounds spacetime should be parallelizable. This strongly suggests that the metric is not the fundamental physical quantity; a very good case can be made for the tetrad being more fundamental than the metric. Furthermore, a globally-defined “almost complex structure” is almost unavoidable. Ideas along these lines have previously been mooted, but much is buried in the pre- arXiv literature and is either forgotten or inaccessible. We shall revisit these ideas taking a perspective very much based on empirical physical observation.


1995 ◽  
Vol 10 (33) ◽  
pp. 2553-2569 ◽  
Author(s):  
SEIJI MATSUMOTO

A global analysis is performed using the recent data from LEP and SLC. Constraints on the electroweak universal parameters (S, T, U) and on the masses of the top quark and Higgs boson within the standard model (SM) are investigated. The uncertainties due to the QCD and QED effective couplings, αs(mz) and , [Formula: see text] are examined in detail. Even though the mean value of S is increased to be consistent with zero, the naive Technicolor models are still disfavored due to its reduced error. Within the SM, we find the 90% CL constraints; 133 GeV<mt<190 GeV and 10 GeV<mH< 440 GeV for αs(mz)=0.116 and [Formula: see text]. The experimental constraints on the ZbLbL vertex form factor, [Formula: see text] play an important role in disfavoring the region of large mt(mt~200GeV) and large mH(mH~1000 GeV). If mt is precisely known, the present electroweak data give a rather strict upper bound on the Higgs mass, mH<140(300) GeV at 95% CL, for mt=160(175) GeV and for the above αs(mz) and [Formula: see text].


2004 ◽  
Vol 13 (09) ◽  
pp. 1939-1953 ◽  
Author(s):  
A. DE LA MACORRA ◽  
G. GERMÁN

We study the cosmology of canonically normalized scalar fields that lead to an equation of state parameter of wϕ=pϕ/ρϕ<-1 without violating the weak energy condition: ρ=Σiρi≥0 and ρi+pi≥0. This kind of behavior requires a negative scalar potential V, widely predicted in particle physics. We show that the energy density ρϕ=Ek+V takes negative values with an equation of state with wϕ<-1. However, the net effect of the ϕ field on the scale factor is to decelerate it giving a total equation of state parameter w=p/ρ>wb=pb/ρb, where ρb stands for any kind of energy density with -1≤wb≤1, such as radiation, matter, cosmological constant or other scalar field with a potential V≥0. The fact that ρϕ<0 allows, at least in principle, to have a small cosmological constant or quintessence today as the cancellation of high energy scales such as the electroweak or susy breaking scale. While V is negative |ρϕ| is smaller than the sum of all other energy densities regardless of the functional form of the potential V. We show that the existence of a negative potential leads, inevitable, to a collapsing universe, i.e. to a would be "big crunch." In this picture we would still be living in the expanding universe.


2015 ◽  
Vol 23 (1) ◽  
pp. 57-70
Author(s):  
Aleandro Nisati

The Large Hadron Collider (LHC) at CERN is the highest energy machine for particle physics research ever built. In the years 2010–2012 this accelerator has collided protons to a centre-mass-energy up to 8 TeV (note that 1 TeV corresponds to the energy of about 1000 protons at rest; the mass of one proton is about 1.67×10–24 g). The events delivered by the LHC have been collected and analysed by four apparatuses placed alongside this machine. The search for the Higgs boson predicted by the Standard Model and the search for new particles and fields beyond this theory represent the most important points of the scientific programme of the LHC. In July 2012, the international collaborations ATLAS and CMS, consisting of more than 3000 physicists, announced the discovery of a new neutral particle with a mass of about 125 GeV, whose physics properties are compatible, within present experimental and theoretical uncertainties, to the Higgs boson predicted by the Standard Model. This discovery represents a major milestone for particle physics, since it indicates that the hypothesized Higgs mechanism seems to be responsible for the masses of elementary particles, in particular W± and Z0 bosons, as well as fermions (leptons and quarks). The 2013 Physics Nobel Prize has been assigned to F. Englert and P. Higgs, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider’.


2002 ◽  
Vol 11 (03) ◽  
pp. 311-319 ◽  
Author(s):  
M. D. POLLOCK

The grand unified gauge group G 6≡ SU (3) C × SU (3) L × SU (3) R , which results from compactification of the heterotic superstring onto a three-generation Calabi–Yau space as a maximal subgroup of E 6, contains two superfields, whose scalar components are the conjugates neutrino [Formula: see text] and the neutral Higgs N, which are singlets of the standard-model gauge group G 4≡ SU (3) C × SU (2) L × U (1) Y , and which therefore break G 6to G 4 when they acquire non-vanishing vacuum expectative values. Here, we show how this process can be implemented in two steps when the scalar potential V(ϕi) is chosen along a non-D-flat direction, using the "superconducting" model due to Mohapatra and Senjanović, in which one of two scalar fields remains in the asymmetric state up to a temperature T0~ 1017 GeV , above which the kinetic energy exceeds the potential drop, forcing restoration of the symmetry below the compactification scale T c ≈ 1017 GeV . This implies that [Formula: see text] initially, but at low temperatures T ≪ M w , we find that [Formula: see text], thus avoiding the problems associated with large intermediate scales M I ≳ 109 GeV while keeping the Higgs mixing term ~ NH1H2 at the right level. A discrete gauge symmetry can prevent the proton from decaying too rapidly.


1998 ◽  
Vol 17 (2) ◽  
pp. 68-71
Author(s):  
R. Tegen

The importance of the recent discovery of the top-quark at Fermilab in Chicago is reviewed. It is shown that the top-quark is important for Big-Bang physics as well as for the Standard Model of Elementary Particle Physics. Relevant literature for further reading can be traced from the list of references given in this short, non-technical article.


Sign in / Sign up

Export Citation Format

Share Document