scholarly journals Stringy canonical forms

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Nima Arkani-Hamed ◽  
Song He ◽  
Thomas Lam

Abstract Canonical forms of positive geometries play an important role in revealing hidden structures of scattering amplitudes, from amplituhedra to associahedra. In this paper, we introduce “stringy canonical forms”, which provide a natural definition and extension of canonical forms for general polytopes, deformed by a parameter α′. They are defined by real or complex integrals regulated with polynomials with exponents, and are meromorphic functions of the exponents, sharing various properties of string amplitudes. As α′→ 0, they reduce to the usual canonical form of a polytope given by the Minkowski sum of the Newton polytopes of the regulating polynomials, or equivalently the volume of the dual of this polytope, naturally determined by tropical functions. At finite α′, they have simple poles corresponding to the facets of the polytope, with the residue on the pole given by the stringy canonical form of the facet. There is the remarkable connection between the α′→ 0 limit of tree-level string amplitudes, and scattering equations that appear when studying the α′→ ∞ limit. We show that there is a simple conceptual understanding of this phenomenon for any stringy canonical form: the saddle-point equations provide a diffeomorphism from the integration domain to the interior of the polytope, and thus the canonical form can be obtained as a pushforward via summing over saddle points. When the stringy canonical form is applied to the ABHY associahedron in kinematic space, it produces the usual Koba-Nielsen string integral, giving a direct path from particle to string amplitudes without an a priori reference to the string worldsheet. We also discuss a number of other examples, including stringy canonical forms for finite-type cluster algebras (with type A corresponding to usual string amplitudes), and other natural integrals over the positive Grassmannian.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
David Damgaard ◽  
Livia Ferro ◽  
Tomasz Łukowski ◽  
Robert Moerman

Abstract In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar φ3 theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


1991 ◽  
Vol 06 (25) ◽  
pp. 4491-4515 ◽  
Author(s):  
OLAF LECHTENFELD ◽  
RASHMI RAY ◽  
ARUP RAY

We investigate a zero-dimensional Hermitian one-matrix model in a triple-well potential. Its tree-level phase structure is analyzed semiclassically as well as in the framework of orthogonal polynomials. Some multiple-arc eigenvalue distributions in the first method correspond to quasiperiodic large-N behavior of recursion coefficients for the second. We further establish this connection between the two approaches by finding three-arc saddle points from orthogonal polynomials. The latter require a modification for nondegenerate potential minima; we propose weighing the average over potential wells.


10.37236/1083 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Aaron N. Siegel

The reduced canonical form of a loopfree game $G$ is the simplest game infinitesimally close to $G$. Reduced canonical forms were introduced by Calistrate, and Grossman and Siegel provided an alternate proof of their existence. In this paper, we show that the Grossman–Siegel construction generalizes to find reduced canonical forms of certain loopy games.


1995 ◽  
Vol 60 (3) ◽  
pp. 843-860 ◽  
Author(s):  
Jan E. Holly

AbstractWe present a canonical form for definable subsets of algebraically closed valued fields by means of decompositions into sets of a simple form, and do the same for definable subsets of real closed valued fields. Both cases involve discs, forming “Swiss cheeses” in the algebraically closed case, and cuts in the real closed case. As a step in the development, we give a proof for the fact that in “most” valued fields F, if f(x), g(x) ∈ F[x] and v is the valuation map, then the set {x: v(f(x)) ≤ v(g(x))} is a Boolean combination of discs; in fact, it is a finite union of Swiss cheeses. The development also depends on the introduction of “valued trees”, which we define formally.


1937 ◽  
Vol 56 ◽  
pp. 50-89 ◽  
Author(s):  
W. Ledermann

In this paper the canonical form of matrix pencils will be discussed which are based on a pair of direct product matrices (Zehfuss matrices), compound matrices, or Schläflian matrices derived from given pencils whose canonical forms are known.When all pencils concerned are non-singular (i.e. when their determinants do not vanish identically), the problem is equivalent to finding the elementary divisors of the pencil. This has been solved by Aitken (1935), Littlewood (1935), and Roth (1934). In the singular case, however, the so-called minimal indices or Kronecker Invariants have to be determined in addition to the elementary divisors (Turnbull and Aitken, 1932, chap. ix). The solution of this problem is the subject of the following investigation.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 766-779
Author(s):  
Taha Aziz ◽  
Aeeman Fatima ◽  
Chaudry Masood Khalique

AbstractThe invariant approach is employed to solve the Cauchy problem for the bond-pricing partial differential equation (PDE) of mathematical finance. We first briefly review the invariant criteria for a scalar second-order parabolic PDE in two independent variables and then utilize it to reduce the bond-pricing equation to different Lie canonical forms. We show that the invariant approach aids in transforming the bond-pricing equation to the second Lie canonical form and that with a proper parametric selection, the bond-pricing PDE can be converted to the first Lie canonical form which is the classical heat equation. Different cases are deduced for which the original equation reduces to the first and second Lie canonical forms. For each of the cases, we work out the transformations which map the bond-pricing equation into the heat equation and also to the second Lie canonical form. We construct the fundamental solutions for the bond-pricing model via these transformations by utilizing the fundamental solutions of the classical heat equation as well as solution to the second Lie canonical form. Finally, the closed-form analytical solutions of the Cauchy initial value problems for the bond-pricing model with proper choice of terminal conditions are obtained.


1987 ◽  
Vol 288 ◽  
pp. 173-232 ◽  
Author(s):  
V. Alan Kostelecký ◽  
Olaf Lechtenfeld ◽  
Wolfgang Lerche ◽  
Stuart Samuel ◽  
Satoshi Watamura
Keyword(s):  

2003 ◽  
Vol 01 (03) ◽  
pp. 337-347
Author(s):  
XIAO-HONG WANG ◽  
SHAO-MING FEI ◽  
ZHI-XI WANG ◽  
KE WU

We investigate the canonical forms of positive partial transposition (PPT) density matrices in [Formula: see text] composite quantum systems with rank N. A general expression for these PPT states are explicitly obtained. From this canonical form a sufficient separability condition is presented.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gabriele Dian ◽  
Paul Heslop

Abstract We consider amplituhedron-like geometries which are defined in a similar way to the intrinsic definition of the amplituhedron but with non-maximal winding number. We propose that for the cases with minimal number of points the canonical form of these geometries corresponds to the product of parity conjugate amplitudes at tree as well as loop level. The product of amplitudes in superspace lifts to a star product in bosonised superspace which we give a precise definition of. We give an alternative definition of amplituhedron-like geometries, analogous to the original amplituhedron definition, and also a characterisation as a sum over pairs of on-shell diagrams that we use to prove the conjecture at tree level. The union of all amplituhedron-like geometries has a very simple definition given by only physical inequalities. Although such a union does not give a positive geometry, a natural extension of the standard definition of canonical form, the globally oriented canonical form, acts on this union and gives the square of the amplitude.


Sign in / Sign up

Export Citation Format

Share Document