scholarly journals Three-loop soft function for energetic electroweak boson production at hadron colliders

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ze Long Liu ◽  
Maximilian Stahlhofen

Abstract We calculate the three-loop soft function for the production of an electroweak boson (Higgs, γ, W±, Z) with large transverse momentum at a hadron collider. It is the first time a soft function for a three-parton process is computed at next-to-next-to-next-to-leading order (N3LO). As a technical novelty, we perform the calculation in terms of forward-scattering-type loop diagrams rather than evaluating phase space integrals. Our three-loop result contains color-tripole contributions and explicitly confirms predictions on the universal infrared structure of QCD scattering amplitudes with three massless parton legs. The soft function is a central ingredient in the factorized cross section for electroweak boson production near the kinematic endpoint (threshold), where the invariant mass of the recoiling hadronic radiation is small compared to its transverse momentum. Our result is required for predictions of the near-threshold cross sections at N3LO and for the resummation of threshold logarithms at primed next-to-next-to-next-to-leading logarithmic (N3LL′) accuracy.

2006 ◽  
Vol 21 (02) ◽  
pp. 89-109 ◽  
Author(s):  
S. DAWSON ◽  
C. B. JACKSON ◽  
L. REINA ◽  
D. WACKEROTH

We review the present status of the QCD corrected cross-sections and kinematic distributions for the production of a Higgs boson in association with bottom quarks at the Fermilab Tevatron and CERN Large Hadron Collider. Results are presented for the Minimal Supersymmetric Standard Model where, for large tan β, these production modes can be greatly enhanced compared to the Standard Model case. The next-to-leading order QCD results are much less sensitive to the renormalization and factorization scales than the lowest order results, but have a significant dependence on the choice of the renormalization scheme for the bottom quark Yukawa coupling. We also investigate the uncertainties coming from the Parton Distribution Functions and find that these uncertainties can be comparable to the uncertainties from the remaining scale dependence of the next-to-leading order results. We present results separately for the different final states depending on the number of bottom quarks identified.


1989 ◽  
Vol 40 (7) ◽  
pp. 2245-2268 ◽  
Author(s):  
Richard J. Gonsalves ◽  
Jerzy Pawłowski ◽  
Chung-Fai Wai

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Colomba Brancaccio ◽  
Michał Czakon ◽  
Terry Generet ◽  
Michael Krämer

Abstract We compute the fragmentation functions for the production of a Higgs boson at $$ \mathcal{O} $$ O ($$ {y}_t^2 $$ y t 2 αs). As part of this calculation, the relevant splitting functions are also derived at the same perturbative order. Our results can be used to compute differential cross sections with arbitrary top-quark and Higgs-boson masses from massless calculations. They can also be used to resum logarithms of the form ln(pT/m) at large transverse momentum pT to next-to-leading-logarithmic accuracy by solving the DGLAP equations.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Stefano Catani ◽  
Ignacio Fabre ◽  
Massimiliano Grazzini ◽  
Stefan Kallweit

AbstractWe consider QCD radiative corrections to the associated production of a heavy-quark pair ($$Q{{\bar{Q}}}$$ Q Q ¯ ) with a generic colourless system F at hadron colliders. We discuss the resummation formalism for the production of the $$Q{{\bar{Q}}}F$$ Q Q ¯ F system at small values of its total transverse momentum $$q_T$$ q T . We present the results of the corresponding resummation coefficients at next-to-leading and, partly, next-to-next-to-leading order. The perturbative expansion of the resummation formula leads to the explicit ingredients that can be used to apply the $$q_T$$ q T subtraction formalism to fixed-order calculations for this class of processes. We use the $$q_T$$ q T subtraction formalism to perform a fully differential perturbative computation for the production of a top-antitop quark pair and a Higgs boson. At next-to-leading order we compare our results with those obtained with established subtraction methods and we find complete agreement. We present, for the first time, the results for the flavour off-diagonal partonic channels at the next-to-next-to-leading order.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Daniel Gutierrez-Reyes ◽  
Sergio Leal-Gomez ◽  
Ignazio Scimemi

AbstractAt hadron colliders, the differential cross section for W production can be factorized and it is sensitive transverse momentum dependent distributions (TMD) for low boson transverse momentum. While, often, the corresponding non-perturbative QCD contributions are extrapolated from Z boson production, here we use an existing extraction (based on the code Artemide) of TMD which includes data coming from Drell–Yan and semi-inclusive deep inelastic scattering, to provide checks and predictions for the W case. Including fiducial cuts with different configurations and kinematical power corrections, we consider transverse momentum dependent cross sections within several intervals of the vector boson transverse mass. We perform the same study for the $$p_T^{W^-}/p_T^{W^+}$$ p T W - / p T W + and $$p_T^Z/p_T^W$$ p T Z / p T W distributions. We compare our predictions with recent extractions of these quantities at ATLAS and CMS and results from TeVatron. The results encourage a broader experimental and phenomenological work, and a deeper study of TMD for the W case.


Sign in / Sign up

Export Citation Format

Share Document