scholarly journals W-boson production in TMD factorization

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Daniel Gutierrez-Reyes ◽  
Sergio Leal-Gomez ◽  
Ignazio Scimemi

AbstractAt hadron colliders, the differential cross section for W production can be factorized and it is sensitive transverse momentum dependent distributions (TMD) for low boson transverse momentum. While, often, the corresponding non-perturbative QCD contributions are extrapolated from Z boson production, here we use an existing extraction (based on the code Artemide) of TMD which includes data coming from Drell–Yan and semi-inclusive deep inelastic scattering, to provide checks and predictions for the W case. Including fiducial cuts with different configurations and kinematical power corrections, we consider transverse momentum dependent cross sections within several intervals of the vector boson transverse mass. We perform the same study for the $$p_T^{W^-}/p_T^{W^+}$$ p T W - / p T W + and $$p_T^Z/p_T^W$$ p T Z / p T W distributions. We compare our predictions with recent extractions of these quantities at ATLAS and CMS and results from TeVatron. The results encourage a broader experimental and phenomenological work, and a deeper study of TMD for the W case.

2020 ◽  
pp. 2141001
Author(s):  
Kyungmin Park ◽  
Ui Min ◽  
Soo Jin Lee ◽  
Won Jun

We present the MadAnalysis 5 implementation of the heavily charged gauge boson search to recast the analysis of its decay into one charged lepton and missing transverse momentum. Signal events describing [Formula: see text] ([Formula: see text] or [Formula: see text]) at [Formula: see text] TeV in the sequential standard model are generated by the MadGraph5_aMC@NLO at leading order. The corresponding signal cross-sections for both electron and muon channels vary from 195 fb to 0.238 fb depending on the pole mass of the [Formula: see text] boson in the range of 2 TeV to 6 TeV. We validate our implementation by comparing the transverse mass distributions of our signal prediction to those of the ATLAS analysis for an integrated luminosity of 139 fb[Formula: see text].


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Carlo Oleari ◽  
Marco Rocco

AbstractWe consider the production of a vector boson (Z, $$W^\pm $$ W ± or $$\gamma ^*$$ γ ∗ ) at next-to-next-to-leading order in the strong coupling constant $$\alpha _\mathrm{S}$$ α S . We impose a transverse-momentum cutoff, $$q_{\mathrm{T}}^{\mathrm{cut}}$$ q T cut , on the vector boson produced in the qg-initiated channel. We then compute the power corrections in the cutoff, up to the second power, of the real-virtual interference contribution to the cumulative cross section at order $$\alpha _\mathrm{S}^2$$ α S 2 . Other terms with the same kinematics, originating from the subtraction method applied to the double-real contribution, have been also considered. The knowledge of such power corrections is a required ingredient in order to reduce the dependence on the transverse-momentum cutoff of the QCD cross sections at next-to-next-to-leading order, when the $$q_{\mathrm{T}}$$ q T -subtraction method is applied. In addition, the study of the dependence of the cross section on $$q_{\mathrm{T}}^{\mathrm{cut}}$$ q T cut allows as well for an understanding of its behaviour in the small transverse-momentum limit, giving hints on the structure at all orders in $$\alpha _\mathrm{S}$$ α S and on the identification of universal patterns. Our result are presented in an analytic form, using the process-independent procedure described in a previous paper for the calculation of the all-order power corrections in $$q_{\mathrm{T}}^{\mathrm{cut}}$$ q T cut .


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ze Long Liu ◽  
Maximilian Stahlhofen

Abstract We calculate the three-loop soft function for the production of an electroweak boson (Higgs, γ, W±, Z) with large transverse momentum at a hadron collider. It is the first time a soft function for a three-parton process is computed at next-to-next-to-next-to-leading order (N3LO). As a technical novelty, we perform the calculation in terms of forward-scattering-type loop diagrams rather than evaluating phase space integrals. Our three-loop result contains color-tripole contributions and explicitly confirms predictions on the universal infrared structure of QCD scattering amplitudes with three massless parton legs. The soft function is a central ingredient in the factorized cross section for electroweak boson production near the kinematic endpoint (threshold), where the invariant mass of the recoiling hadronic radiation is small compared to its transverse momentum. Our result is required for predictions of the near-threshold cross sections at N3LO and for the resummation of threshold logarithms at primed next-to-next-to-next-to-leading logarithmic (N3LL′) accuracy.


2015 ◽  
Vol 2015 (12) ◽  
pp. 1-47 ◽  
Author(s):  
Stefano Catani ◽  
Daniel de Florian ◽  
Giancarlo Ferrera ◽  
Massimiliano Grazzini

Author(s):  
Ivan A. Shershan ◽  
Tatiana V. Shishkina

In this paper the analysis of W-boson production process in high-energy electron-photon collisions as a tool to search for deviations from the Standard Model is considered. In particular, a set of extended gauge models, including anomalous multi-boson interactions, are discussed as a promising way for «new physics» study. A numerical analysis of the total cross sections of the processes was carried out. The lowest order radiative corrections in the soft-photon approximation within the Standard Model are taken into account. Calculations beyond the Standard Model was performed, the kinematic features of the cross sections were identified. The restrictions on the anomalous triple gauge boson coupling constants were analyzed and the kinematic areas to the search for their manifestations were obtained during the experiments at the International Linear Collider. The paper shows that the search for «new physics» effects based on electron-photon collisions around the W-boson production peak is the maximal promising. It was also shown that future experiments at high luminosity linear colliders will significantly clarify the constraints on anomalous gauge coupling constants.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
M. Aaboud ◽  
◽  
G. Aad ◽  
B. Abbott ◽  
O. Abdinov ◽  
...  

Two additions impacting tables 3 and 4 in ref. [1] are presented in the following. No significant impact is found for other results or figures in ref. [1].


Sign in / Sign up

Export Citation Format

Share Document