scholarly journals On the BV formalism of open superstring field theory in the large Hilbert space

2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Hiroaki Matsunaga ◽  
Mitsuru Nomura
Keyword(s):  
1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


1981 ◽  
Vol 81 ◽  
pp. 177-223 ◽  
Author(s):  
Yoshio Miyahara

Stochastic processes on a Hilbert space have been discussed in connection with quantum field theory, theory of partial differential equations involving random terms, filtering theory in electrical engineering and so forth, and the theory of those processes has greatly developed recently by many authors (A. B. Balakrishnan [1, 2], Yu. L. Daletskii [7], D. A. Dawson [8, 9], Z. Haba [12], R. Marcus [18], M. Yor [26]).


2013 ◽  
Vol 28 (17) ◽  
pp. 1330023 ◽  
Author(s):  
MARCO BENINI ◽  
CLAUDIO DAPPIAGGI ◽  
THOMAS-PAUL HACK

Goal of this paper is to introduce the algebraic approach to quantum field theory on curved backgrounds. Based on a set of axioms, first written down by Haag and Kastler, this method consists of a two-step procedure. In the first one, it is assigned to a physical system a suitable algebra of observables, which is meant to encode all algebraic relations among observables, such as commutation relations. In the second step, one must select an algebraic state in order to recover the standard Hilbert space interpretation of a quantum system. As quantum field theories possess infinitely many degrees of freedom, many unitarily inequivalent Hilbert space representations exist and the power of such approach is the ability to treat them all in a coherent manner. We will discuss in detail the algebraic approach for free fields in order to give the reader all necessary information to deal with the recent literature, which focuses on the applications to specific problems, mostly in cosmology.


2004 ◽  
Vol 19 (supp02) ◽  
pp. 117-125
Author(s):  
A. CHATTARAPUTI ◽  
F. ENGLERT ◽  
L. HOUART ◽  
A. TAORMINA

A universal symmetric truncation of the bosonic string Hilbert space yields all known closed fermionic string theories in ten dimensions, their D-branes and their open descendants. We highlight the crucial role played by group theory and two-dimensional conformal field theory in the construction and emphasize the predictive power of the truncation. Such circumstantial evidence points towards the existence of a mechanism which generates space-time fermions out of bosons dynamically within the framework of bosonic string theory.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


1959 ◽  
Vol 12 (2) ◽  
pp. 190-203 ◽  
Author(s):  
A.A. Komar ◽  
M.A. Markov

1954 ◽  
Vol 11 (6) ◽  
pp. 537-556 ◽  
Author(s):  
Giiti Iwata
Keyword(s):  

2017 ◽  
Vol 26 (12) ◽  
pp. 1743013 ◽  
Author(s):  
Ning Bao ◽  
Sean M. Carroll ◽  
Ashmeet Singh

We argue in a model-independent way that the Hilbert space of quantum gravity is locally finite-dimensional. In other words, the density operator describing the state corresponding to a small region of space, when such a notion makes sense, is defined on a finite-dimensional factor of a larger Hilbert space. Because quantum gravity potentially describes superpositions of different geometries, it is crucial that we associate Hilbert-space factors with spatial regions only on individual decohered branches of the universal wave function. We discuss some implications of this claim, including the fact that quantum-field theory cannot be a fundamental description of nature.


Sign in / Sign up

Export Citation Format

Share Document