scholarly journals AdS instability: resonant system for gravitational perturbations of AdS5 in the cohomogeneity-two biaxial Bianchi IX ansatz

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Dominika Hunik-Kostyra ◽  
Andrzej Rostworowski
2020 ◽  
Vol 500 (3) ◽  
pp. 2979-2985
Author(s):  
Xiaodong Liu ◽  
Jürgen Schmidt

ABSTRACT It is expected since the early 1970s that tenuous dust rings are formed by grains ejected from the Martian moons Phobos and Deimos by impacts of hypervelocity interplanetary projectiles. In this paper, we perform direct numerical integrations of a large number of dust particles originating from Phobos and Deimos. In the numerical simulations, the most relevant forces acting on the dust are included: Martian gravity with spherical harmonics up to fifth degree and fifth order, gravitational perturbations from the Sun, Phobos, and Deimos, solar radiation pressure, as well as the Poynting–Robertson drag. In order to obtain the ring configuration, simulation results of various grain sizes ranging from submicrometres to 100 μm are averaged over a specified initial mass distribution of ejecta. We find that for the Phobos ring grains smaller than about 2 μm are dominant; while the Deimos ring is dominated by dust in the size range of about 5–20 μm. The asymmetries, number densities, and geometric optical depths of the rings are quantified from simulations. The results are compared with the upper limits of the optical depth inferred from Hubble observations. We compare to previous work and discuss the uncertainties of the models.


2021 ◽  
Author(s):  
Zicong Guo ◽  
Kunhua Wen ◽  
Yuwen Qin ◽  
Yihong Fang ◽  
Zhengfeng Li ◽  
...  

AbstractIn this paper, a sub-wavelength metal-insulator-metal (MIM) waveguide structure is proposed by using a cross-shape rectangular cavity, of which wings are coupled with two rectangular cavities. Firstly, a cross-shape rectangular cavity is placed between the input and output MIM waveguides. According to the mutual interference between bright and dark modes, three Fano resonant peaks are generated. Secondly, by adding a rectangular cavity on the left wing of the cross shaped one, five asymmetric Fano resonance peaks are obtained. Thirdly, six asymmetric Fano resonance peaks are achieved after adding another cavity on the right wing. Finally, the finite-difference-time-domain (FDTD) method and multimode interference coupled-mode theory (MICMT) are used to simulate and analyze the coupled plasmonic resonant system, respectively. The highest sensitivity of 1 000nm/RIU is achieved.


Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 4009-4019
Author(s):  
Artur Movsesyan ◽  
Gwénaëlle Lamri ◽  
Sergei Kostcheev ◽  
Anke Horneber ◽  
Annika Bräuer ◽  
...  

AbstractMulti-resonant plasmonic simple geometries like nanocylinders and nanorods are highly interesting for two-photon photoluminescence and second harmonic generation applications, due to their easy fabrication and reproducibility in comparison with complex multi-resonant systems like dimers or nanoclusters. We demonstrate experimentally that by using a simple gold nanocylinder we can achieve a double resonantly enhanced two-photon photoluminescence of quantum dots, by matching the excitation wavelength of the quantum dots with a dipolar plasmon mode, while the emission is coupled with a radiative quadrupolar mode. We establish a method to separate experimentally the enhancement factor at the excitation and at the emission wavelengths for this double resonant system. The sensitivity of the spectral positions of the dipolar and quadrupolar plasmon resonances to the ellipticity of the nanocylinders and its impact on the two-photon photoluminescence enhancement are discussed.


2019 ◽  
Vol 7 (20) ◽  
pp. 12859-12868 ◽  
Author(s):  
Zhenyu Pan ◽  
Heng Wang

Transport properties in resonant system PbSe:Tl are now quantitatively explained with Boltzmann transport equations.


1998 ◽  
Vol 9 (11) ◽  
pp. 1813-1825 ◽  
Author(s):  
John Argyris ◽  
Ioannis Andreadis ◽  
Corneliu Ciubotariu

Sign in / Sign up

Export Citation Format

Share Document