scholarly journals Loops in AdS: from the spectral representation to position space. Part II

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dean Carmi

Abstract We continue the study of AdS loop amplitudes in the spectral representation and in position space. We compute the finite coupling 4-point function in position space for the large-N conformal Gross Neveu model on AdS3. The resummation of loop bubble diagrams gives a result proportional to a tree-level contact diagram. We show that certain families of fermionic Witten diagrams can be easily computed from their companion scalar diagrams. Thus, many of the results and identities of [1] are extended to the case of external fermions. We derive a spectral representation for ladder diagrams in AdS. Finally, we compute various bulk 2-point correlators, extending the results of [1].

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
J.M. Drummond ◽  
H. Paul

Abstract We consider α′ corrections to the one-loop four-point correlator of the stress- tensor multiplets in $$ \mathcal{N} $$ N = 4 super Yang-Mills at order 1/N4. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on AdS5 × S5. While this correlator has been considered in Mellin space before, we derive the corresponding position space results, gaining new insights into the analytic structure of AdS loop amplitudes. Most notably, the presence of a transcendental weight three function involving new singularities is required, which has not appeared in the context of AdS amplitudes before. We thereby confirm the structure of string corrected one-loop Mellin amplitudes, and also provide new explicit results at orders in α′ not considered before.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Bakul Agarwal ◽  
Federico Buccioni ◽  
Andreas von Manteuffel ◽  
Lorenzo Tancredi

Abstract We present the leading colour and light fermionic planar two-loop corrections for the production of two photons and a jet in the quark-antiquark and quark-gluon channels. In particular, we compute the interference of the two-loop amplitudes with the corresponding tree level ones, summed over colours and polarisations. Our calculation uses the latest advancements in the algorithms for integration-by-parts reduction and multivariate partial fraction decomposition to produce compact and easy-to-use results. We have implemented our results in an efficient C++ numerical code. We also provide their analytic expressions in Mathematica format.


1995 ◽  
Vol 10 (21) ◽  
pp. 1543-1548 ◽  
Author(s):  
VIPUL PERIWAL

The free energy is shown to decrease along Wilson renormalization group trajectories, in a dimension-independent fashion, for d>2. The argument assumes the monotonicity of the cutoff function, and positivity of a spectral representation of the two-point function. The argument is valid for all orders in perturbation theory.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Hare Krishna ◽  
D. Rodriguez-Gomez

Abstract We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator Ok and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of TnOk (being Tn the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way.


2021 ◽  
Author(s):  
Jeremie M. Unterberger

Abstract We give a new constructive proof of the infrared behavior of the Euclidean Gross-Neveu model in two dimensions with small coupling and large component number N. Our argument does not rely on the use of an intermediate (auxiliary bosonic) field. Instead bubble series are resummed by hand, and determinant bounds replaced by a control of local factorials relying on combinatorial arguments and Pauli's principle. The discrete symmetry-breaking is ensured by considering the model directly with a mass counterterm chosen in such a way as to cancel tadpole diagrams. Then the fermion two-point function is shown to decay (quasi-)exponentially as in [12]/


2013 ◽  
Vol 2013 (10) ◽  
Author(s):  
Omar Foda ◽  
Yunfeng Jiang ◽  
Ivan Kostov ◽  
Didina Serban
Keyword(s):  

2002 ◽  
Vol 17 (08) ◽  
pp. 1117-1135
Author(s):  
AALOK MISRA

We analyze several open and mixed sector tree-level amplitudes in N = 2 p - p′ systems with a constant magnetic B turned on. The three-point function vanishes on-shell. The four-point function, in the Seiberg–Witten (SW) low energy limit,2 is local, indicating the possible topological nature of the theory (in the SW low energy limit) and the possible relation between noncommutativeN = 2 p - p′system in two complex dimensions and in the SW limit, and (non)commutativeN = 2 p′ - p′system in two real dimensions. We discuss three extreme noncommutativity limits (after having taken the Seiberg–Witten low energy limit) of the mixed three-point function, and get two kinds of commutative nonassociative generalized star products. We make some speculative remarks related to reproducing the above four-point tree level amplitude in the open sector, from a field theory.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Soner Albayrak ◽  
Savan Kharel ◽  
David Meltzer

Abstract We explore color-kinematic duality for tree-level AdS/CFT correlators in momentum space. We start by studying the bi-adjoint scalar in AdS at tree-level as an illustrative example. We follow this by investigating two forms of color-kinematic duality in Yang-Mills theory, the first for the integrated correlator in AdS4 and the second for the integrand in general AdSd+1. For the integrated correlator, we find color-kinematics does not yield additional relations among n-point, color-ordered correlators. To study color-kinematics for the AdSd+1 Yang-Mills integrand, we use a spectral representation of the bulk-to-bulk propagator so that AdS diagrams are similar in structure to their flat space counterparts. Finally, we study color KLT relations for the integrated correlator and double-copy relations for the AdS integrand. We find that double-copy in AdS naturally relates the bi-adjoint theory in AdSd+3 to Yang-Mills in AdSd+1. We also find a double-copy relation at three-points between Yang-Mills in AdSd+1 and gravity in AdSd−1 and comment on the higher-point generalization. By analytic continuation, these results on AdS/CFT correlators can be translated into statements about the wave function of the universe in de Sitter.


Sign in / Sign up

Export Citation Format

Share Document