scholarly journals Partition functions of Chern-Simons theory on handlebodies by radial quantization

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Massimo Porrati ◽  
Cedric Yu

Abstract We use radial quantization to compute Chern-Simons partition functions on handlebodies of arbitrary genus. The partition function is given by a particular transition amplitude between two states which are defined on the Riemann surfaces that define the (singular) foliation of the handlebody. The final state is a coherent state while on the initial state the holonomy operator has zero eigenvalue. The latter choice encodes the constraint that the gauge fields must be regular everywhere inside the handlebody. By requiring that the only singularities of the gauge field inside the handlebody must be compatible with Wilson loop insertions, we find that the Wilson loop shifts the holonomy of the initial state. Together with an appropriate choice of normalization, this procedure selects a unique state in the Hilbert space obtained from a Kähler quantization of the theory on the constant-radius Riemann surfaces. Radial quantization allows us to find the partition functions of Abelian Chern-Simons theories for handlebodies of arbitrary genus. For non-Abelian compact gauge groups, we show that our method reproduces the known partition function at genus one.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M.Y. Avetisyan ◽  
R.L. Mkrtchyan

Abstract We present a new expression for the partition function of the refined Chern-Simons theory on S3 with an arbitrary gauge group, which is explicitly equal to 1 when the coupling constant is zero. Using this form of the partition function we show that the previously known Krefl-Schwarz representation of the partition function of the refined Chern-Simons theory on S3 can be generalized to all simply laced algebras.For all non-simply laced gauge algebras, we derive similar representations of that partition function, which makes it possible to transform it into a product of multiple sine functions aiming at the further establishment of duality with the refined topological strings.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Aditya Dwivedi ◽  
Siddharth Dwivedi ◽  
Bhabani Prasad Mandal ◽  
Pichai Ramadevi ◽  
Vivek Kumar Singh

AbstractThe entanglement entropy of many quantum systems is difficult to compute in general. They are obtained as a limiting case of the Rényi entropy of index m, which captures the higher moments of the reduced density matrix. In this work, we study pure bipartite states associated with S3 complements of a two-component link which is a connected sum of a knot $$ \mathcal{K} $$ K and the Hopf link. For this class of links, the Chern-Simons theory provides the necessary setting to visualise the m-moment of the reduced density matrix as a three-manifold invariant Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ), which is the partition function of $$ {M}_{{\mathcal{K}}_m} $$ M K m . Here $$ {M}_{{\mathcal{K}}_m} $$ M K m is a closed 3-manifold associated with the knot $$ \mathcal{K} $$ K m, where $$ \mathcal{K} $$ K m is a connected sum of m-copies of $$ \mathcal{K} $$ K (i.e., $$ \mathcal{K} $$ K #$$ \mathcal{K} $$ K . . . #$$ \mathcal{K} $$ K ) which mimics the well-known replica method. We analayse the partition functions Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SU(2) and SO(3) gauge groups, in the limit of the large Chern-Simons coupling k. For SU(2) group, we show that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) can grow at most polynomially in k. On the contrary, we conjecture that Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) for SO(3) group shows an exponential growth in k, where the leading term of ln Z($$ {M}_{{\mathcal{K}}_m} $$ M K m ) is the hyperbolic volume of the knot complement S3\$$ \mathcal{K} $$ K m. We further propose that the Rényi entropies associated with SO(3) group converge to a finite value in the large k limit. We present some examples to validate our conjecture and proposal.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Dongmin Gang ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $$ \mathrm{\mathcal{R}} $$ ℛ . Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-N expansion of supersymmetric partition functions for an infinite class of three-dimensional $$ \mathcal{N} $$ N = 2 SCFTs of class $$ \mathrm{\mathcal{R}} $$ ℛ . We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.


2004 ◽  
Vol 19 (18) ◽  
pp. 1365-1378 ◽  
Author(s):  
M. TIERZ

We study the properties of matrix models with soft confining potentials. Their precise mathematical characterization is that their weight function is not determined by its moments. We mainly rely on simple considerations based on orthogonal polynomials and the moment problem. In addition, some of these models are equivalent, by a simple mapping, to matrix models that appear in Chern–Simons theory. The models can be solved with q deformed orthogonal polynomials (Stieltjes–Wigert polynomials), and the deformation parameter turns out to be the usual q parameter in Chern–Simons theory. In this way, we give a matrix model computation of the Chern–Simons partition function on S3 and show that there are infinitely many matrix models with this partition function.


1992 ◽  
Vol 07 (23) ◽  
pp. 2065-2076 ◽  
Author(s):  
S. KALYANA RAMA ◽  
SIDDHARTHA SEN

We show how the Turaev-Viro invariant, which is closely related to the partition function of three-dimensional gravity, can be understood within the framework of SU(2) Chern-Simons theory. We also show that, for S3 and RP3, this invariant is equal to the absolute value square of their respective partition functions in SU(2) Chern-Simons theory and give a method of evaluating the latter in a closed form for a class of 3D manifolds, thus in effect obtaining the partition function of three-dimensional gravity for these manifolds. By interpreting the triangulation of a manifold as a graph consisting of crossings and vertices with three lines we also describe a new invariant for certain class of graphs.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


1991 ◽  
Vol 06 (15) ◽  
pp. 2743-2754 ◽  
Author(s):  
NORISUKE SAKAI ◽  
YOSHIAKI TANII

The radius dependence of partition functions is explicitly evaluated in the continuum field theory of a compactified boson, interacting with two-dimensional quantum gravity (noncritical string) on Riemann surfaces for the first few genera. The partition function for the torus is found to be a sum of terms proportional to R and 1/R. This is in agreement with the result of a discretized version (matrix models), but is quite different from the critical string. The supersymmetric case is also explicitly evaluated.


1997 ◽  
Vol 12 (23) ◽  
pp. 1687-1697
Author(s):  
Daniel C. Cabra ◽  
Gerardo L. Rossini

We give explicit field theoretical representations for the observables of (2+1)-dimensional Chern–Simons theory in terms of gauge-invariant composites of 2-D WZW fields. To test our identification we compute some basic Wilson loop correlators and re-obtain the known results.


Sign in / Sign up

Export Citation Format

Share Document