scholarly journals Disentangling observable dependence in SCETI and SCETII anomalous dimensions: angularities at two loops

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Christian W. Bauer ◽  
Aneesh V. Manohar ◽  
Pier Francesco Monni

Abstract The resummation of radiative corrections to collider jet observables using soft collinear effective theory is encoded in differential renormalization group equations (RGEs), with anomalous dimensions depending on the observable under consideration. This observable dependence arises from the ultraviolet (UV) singular structure of real phase space integrals in the effective field theory. We show that the observable dependence of anomalous dimensions in SCETI problems can be disentangled by introducing a suitable UV regulator in real radiation integrals. Resummation in the presence of the new regulator can be performed by solving a two-dimensional system of RGEs in the collinear and soft sectors, and resembles many features of resummation in SCETII theories by means of the rapidity renormalization group. We study the properties of SCETI with the additional regulator and explore the connection with the system of RGEs in SCETII theories, highlighting some universal patterns that can be exploited in perturbative calculations. As an application, we compute the two-loop soft and jet anomalous dimensions for a family of recoil-free angularities and give new analytic results. This allows us to study the relations between the SCETI and SCETII limits for these observables. We also discuss how the extra UV regulator can be exploited to calculate anomalous dimensions numerically, and the prospects for numerical resummation.

Effective field theory (EFT) is a general method for describing quantum systems with multiple-length scales in a tractable fashion. It allows us to perform precise calculations in established models (such as the standard models of particle physics and cosmology), as well as to concisely parametrize possible effects from physics beyond the standard models. EFTs have become key tools in the theoretical analysis of particle physics experiments and cosmological observations, despite being absent from many textbooks. This volume aims to provide a comprehensive introduction to many of the EFTs in use today, and covers topics that include large-scale structure, WIMPs, dark matter, heavy quark effective theory, flavour physics, soft-collinear effective theory, and more.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Minyuan Jiang ◽  
Teng Ma ◽  
Jing Shu

Abstract We describe the on-shell method to derive the Renormalization Group (RG) evolution of Wilson coefficients of high dimensional operators at one loop, which is a necessary part in the on-shell construction of the Standard Model Effective Field Theory (SMEFT), and exceptionally efficient based on the amplitude basis in hand. The UV divergence is obtained by firstly calculating the coefficients of scalar bubble integrals by unitary cuts, then subtracting the IR divergence in the massless bubbles, which can be easily read from the collinear factors we obtained for the Standard Model fields. Examples of deriving the anomalous dimensions at dimension six are presented in a pedagogical manner. We also give the results of contributions from the dimension-8 H4D4 operators to the running of V+V−H2 operators, as well as the running of B+B−H2D2n from H4D2n+4 for general n.


2014 ◽  
Vol 25 ◽  
pp. 1460014
Author(s):  
MATTHEW D. SCHWARTZ

Factorization is at the heart of nearly any calculation in pertubative QCD. It follows from the universal behavior of gauge theories in soft and collinear limits. This talk gives a summary of recent progress on producing a more transparent understanding of factorization and connecting traditional approaches to those of Soft-Collinear Effective Theory. The main result is the formulation and proof, at tree-level, of a factorization formula in QCD. The proof exploits the many advantages of spinor helicity methods, but does not use any effective field theory tricks. Once the factorization formula is proven, the transition to an effective theory description is effortless.


2010 ◽  
Vol 25 (22) ◽  
pp. 4255-4290
Author(s):  
JI-FENG YANG ◽  
ZHAO-TING PAN

We demonstrate our simple strategy for renormalization with QED at one-loop level, basing on an elaboration of the effective field theory philosophy. No artificial regularization or deformation of the original theory is introduced here and hence no manipulation of infinities, ambiguities arise instead of infinities. Ward identities first come to reduce the number of ambiguities, the residual ones could in principle be removed by imposing physical boundary conditions. Renormalization group equations arise as "decoupling theorems" in the underlying theory perspective. In addition, a technical theorem concerning routing of external momenta is also presented and illustrated with the self-energy and vertex function as examples.


Author(s):  
Mikael Chala ◽  
Guilherme Guedes ◽  
Maria Ramos ◽  
Jose Santiago

AbstractThe couplings of axion-like particles are probed by different experiments across a huge range of energy scales. Accordingly, a consistent analysis of the corresponding constraints requires the use of the renormalization group equations. We compute the full one-loop renormalization group evolution of all – relevant and marginal – parameters in the effective field theory for axion-like particles up to dimension five, above and below the electroweak scale, assuming only that new physics does not violate CP. We also include a detailed discussion of the different bases used in the literature, the relations among them and the interplay of the CP and shift symmetries.


1996 ◽  
Vol 10 (21) ◽  
pp. 999-1010 ◽  
Author(s):  
ADRIAAN M.J. SCHAKEL

Starting from a standard description of an ideal, isentropic fluid, we derive the effective theory governing a gapless non-relativistic mode — the sound mode. The theory, which is dictated by the requirement of Galilei invariance, entails the entire set of hydrodynamic equations. The gaplessness of the sound mode is explained by identifying it as the Goldstone mode associated with the spontaneous breakdown of Galilei invariance. Differences with a superfluid are pointed out.


2011 ◽  
Vol 04 ◽  
pp. 106-114
Author(s):  
SONNY MANTRY ◽  
FRANK PETRIELLO

We present a factorization theorem for the low transverse momentum (pT) and rapidity (Y) distribution of the Higgs and electroweak gauge bosons using the Soft-Collinear Effective Theory. In the region M ≫ pT ≫ ΛQCD, where M denotes the mass of the electroweak object, the factorization formula is given in terms of perturbatively calculable functions and the standard PDFs. For pT ~ ΛQCD, the factorization theorem is given in terms of non-perturbative Impact-parameter Beam Functions (iBFs) and an Inverse Soft Function (iSF). The iBFs correspond to completely unintegrated PDFs and can be interesting probes of momentum distributions in the nucleon. The iBFs and the iSF are grouped together and written as a product of a gauge invariant and non-perturbative Transverse Momentum Function (TMF) with the standard PDFs. We present results of NLL resummation for the Higgs and Z-boson distributions and give a comparison with Tevatron data.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Joan Elias Miró ◽  
James Ingoldby ◽  
Marc Riembau

Abstract We use the on-shell S-matrix and form factors to compute anomalous dimensions of higher dimension operators in the Standard Model Effective Field Theory. We find that in many instances, these computations are made simple by using the on-shell method. We first compute contributions to anomalous dimensions of operators at dimension-six that arise at one-loop. Then we calculate two-loop anomalous dimensions for which the corresponding one-loop contribution is absent, using this powerful method.


1996 ◽  
Vol 11 (16) ◽  
pp. 2823-2834
Author(s):  
SERGEI D. ODINTSOV ◽  
YONGSUNG YOON

Using the Wilsonian procedure (renormalization group improvement) we discuss the finite quantum corrections to black hole entropy in renormalizable theories. In this way, the Wilsonian black hole entropy is found for GUT’s (of asymptotically free form, in particular) and for the effective theory for the conformal factor aiming to describe quantum gravity in the infrared region. The off-critical regime (where the coupling constants are running) for the effective theory for the conformal factor in quantum gravity (with or without torsion) is explicitly constructed. The corresponding renormalization group equations for the effective couplings are found using the Schwinger-DeWitt technique for the calculation of the divergences of the fourth order operator.


Sign in / Sign up

Export Citation Format

Share Document