scholarly journals Ungauging schemes and Coulomb branches of non-simply laced quiver theories

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Amihay Hanany ◽  
Anton Zajac

Abstract Three dimensional Coulomb branches have a prominent role in the study of moduli spaces of supersymmetric gauge theories with 8 supercharges in 3, 4, 5, and 6 dimensions. Inspired by simply laced 3d $$ \mathcal{N} $$ N = 4 supersymmetric quiver gauge theories, we consider Coulomb branches constructed from non-simply laced quivers with edge multiplicity k and no flavor nodes. In a computation of the Coulomb branch as the space of dressed monopole operators, a center-of-mass U(1) symmetry needs to be ungauged. Typically, for a simply laced theory, all choices of the ungauged U(1) (i.e. all choices of ungauging schemes ) are equivalent and the Coulomb branch is unique. In this note, we study various ungauging schemes and their effect on the resulting Coulomb branch variety. It is shown that, for a non-simply laced quiver, inequivalent ungauging schemes exist which correspond to inequivalent Coulomb branch varieties. Ungauging on any of the long nodes of a non-simply laced quiver yields the same Coulomb branch $$ \mathcal{C} $$ C . For choices of ungauging the U(1) on a short node of rank higher than 1, the GNO dual magnetic lattice deforms anisotropically such that it no longer corresponds to a Lie group, and therefore, the monopole formula yields a non-valid Coulomb branch. However, if the ungauging is performed on a short node of rank 1, the one-dimensional magnetic lattice is rescaled along its single direction i.e. isotropically and the corresponding Coulomb branch is an orbifold of the form $$ \mathcal{C} $$ C /ℤk . Ungauging schemes of 3d Coulomb branches provide a particularly interesting and intuitive description of a subset of actions on the nilpotent orbits studied by Kostant and Brylinski [1]. The ungauging scheme analysis is carried out for minimally unbalanced Cn, affine F4, affine G2, and twisted affine $$ {D}_4^{(3)} $$ D 4 3 quivers, respectively. The analysis is complemented with computations of the Highest Weight Generating functions.

1997 ◽  
Vol 12 (28) ◽  
pp. 5141-5149 ◽  
Author(s):  
César Gómez ◽  
Rafael Hernández

We analyze instanton generated superpotentials for three-dimensional N = 2 supersymmetric gauge theories obtained by compactifying on S1 N = 1 four-dimensional theories. For SU(2) with Nf = 1, we find that the vacua in the decompactification limit is given by the singular points of the Coulomb branch of the N = 2 four-dimensional theory (we also consider the massive case). The decompactification limit of the superpotential for pure gauge theories without chiral matter is interpreted in terms of 't Hooft's fractional instanton amplitudes.


1996 ◽  
Vol 11 (02) ◽  
pp. 131-138 ◽  
Author(s):  
TOHRU EGUCHI ◽  
SUNG-KIL YANG

Using recently proposed soliton equations we derive a basic identity for the scaling violation of N=2 supersymmetric gauge theories Σiai∂F/∂ai−2F=8πib1u. Here F is the prepotential, ai’s are the expectation values of the scalar fields in the vector multiplet, u=1/2 Tr<ϕ2> and b1 is the coefficient of the one-loop β-function. This equation holds in the Coulomb branch of all N=2 supersymmetric gauge theories coupled with massless matter.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2001 ◽  
Vol 16 (22) ◽  
pp. 3745-3753 ◽  
Author(s):  
JUN-CHEN SU ◽  
JIAN-XING CHEN

It is pointed out that the retardation terms given in the original Fermi–Breit potential vanish in the center-of-mass frame. The retarded one-gluon exchange potential is rederived in this paper from the three-dimensional one-gluon exchange kernel which appears in the exact three-dimensional relativistic equation for quark–antiquark bound states. The retardation part of the potential given in the approximation of order p2/m2 is shown to be different from those derived in the previous literature. This part is off-shell and no longer vanishes in the center-of-mass frame.


1998 ◽  
Vol 1998 (04) ◽  
pp. 005-005 ◽  
Author(s):  
Nick Dorey ◽  
David Tong ◽  
Stefan Vandoren

2019 ◽  
Vol 35 (09) ◽  
pp. 2050060 ◽  
Author(s):  
I. L. Buchbinder ◽  
A. S. Budekhina ◽  
B. S. Merzlikin

We study the six-dimensional [Formula: see text] and [Formula: see text] supersymmetric Yang–Mills (SYM) theories in the component formulation. The one-loop divergencies of effective action are calculated. The leading one-loop low-energy contributions to bosonic sector of effective action are found. It is explicitly demonstrated that the contributions to effective potential for the constant background scalar fields are absent in the [Formula: see text] SYM theory.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Julius F. Grimminger ◽  
Amihay Hanany

Abstract We study Hasse diagrams of moduli spaces of 3d $$ \mathcal{N} $$ N = 4 quiver gauge theories. The goal of this work is twofold: 1) We introduce the notion of inverting a Hasse diagram and conjecture that the Coulomb branch and Higgs branch Hasse diagrams of certain theories are related through this operation. 2) We introduce a Hasse diagram to map out the entire moduli space of the theory, including the Coulomb, Higgs and mixed branches. For theories whose Higgs and Coulomb branch Hasse diagrams are related by inversion it is straight forward to generate the Hasse diagram of the entire moduli space. We apply inversion of the Higgs branch Hasse diagram in order to obtain the Coulomb branch Hasse diagram for bad theories and obtain results consistent with the literature. For theories whose Higgs and Coulomb branch Hasse diagrams are not related by inversion it is nevertheless possible to produce the Hasse diagram of the full moduli space using different methods. We give examples for Hasse diagrams of the entire moduli space of theories with enhanced Coulomb branches.


1997 ◽  
Vol 493 (1-2) ◽  
pp. 148-176 ◽  
Author(s):  
Jan de Boer ◽  
Kentaro Hori ◽  
Hirosi Ooguri ◽  
Yaron Oz ◽  
Zheng Yin

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.


Sign in / Sign up

Export Citation Format

Share Document