scholarly journals Tests of Seiberg-like dualities in three dimensions

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Anton Kapustin ◽  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study several duality proposals for supersymmetric gauge theories in three dimensions reminiscent of Seiberg duality. We compare the partition functions of dual theories deformed by real mass terms and FI parameters. We find that Seiberg-like duality for $$ \mathcal{N} $$ N = 3 Chern-Simons gauge theories proposed by Giveon and Kutasov holds on the level of partition functions and is closely related to level-rank duality in pure Chern-Simons theory. We also clarify the relationship between the Giveon-Kutasov duality and a duality in theories of fractional M2 branes and propose a generalization of the latter. Our analysis also confirms previously known results concerning decoupled free sectors in $$ \mathcal{N} $$ N = 4 gauge theories realized by monopole operators.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Brian Willett ◽  
Itamar Yaakov

Abstract We use localization techniques to study duality in 𝒩 = 2 supersymmetric gauge theories in three dimensions. Specifically, we consider a duality due to Aharony involving unitary and symplectic gauge groups, which is similar to Seiberg duality in four dimensions, as well as related dualities involving Chern-Simons terms. These theories have the possibility of non trivial anomalous dimensions for the chiral multiplets and were previously difficult to examine. We use a matrix model to compute the partition functions on both sides of the duality, deformed by real mass and FI terms. The results provide strong evidence for the validity of the proposed dualities. We also comment on a recent proposal for recovering the exact IR conformal dimensions in such theories using localization.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joseph A. Minahan ◽  
Anton Nedelin

Abstract We consider supersymmetric gauge theories on S5 with a negative Yang-Mills coupling in their large N limits. Using localization we compute the partition functions and show that the pure SU(N) gauge theory descends to an SU(N/2)+N/2× SU(N/2)−N/2× SU(2) Chern-Simons gauge theory as the inverse ’t Hooft coupling is taken to negative infinity for N even. The Yang-Mills coupling of the SU(N/2)±N/2 is positive and infinite, while that on the SU(2) goes to zero. We also show that the odd N case has somewhat different behavior. We then study the SU(N/2)N/2 pure Chern-Simons theory. While the eigenvalue density is only found numerically, we show that its width equals 1 in units of the inverse sphere radius, which allows us to find the leading correction to the free energy when turning on the Yang-Mills term. We then consider USp(2N) theories with an antisymmetric hypermultiplet and Nf< 8 fundamental hypermultiplets and carry out a similar analysis. Along the way we show that the one-instanton contribution to the partition function remains exponentially suppressed at negative coupling for the SU(N) theories in the large N limit.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


2004 ◽  
Vol 19 (22) ◽  
pp. 1695-1700 ◽  
Author(s):  
PATRICIO GAETE

For a recently proposed pure gauge theory in three dimensions, without a Chern–Simons term, we calculate the static interaction potential within the structure of the gauge-invariant variables formalism. As a consequence, a confining potential is obtained. This result displays a marked qualitative departure from the usual Maxwell–Chern–Simons theory.


2019 ◽  
Vol 2019 (8) ◽  
Author(s):  
Hiroyuki Hata

Abstract We present an analytic construction of multi-brane solutions with any integer brane number in cubic open string field theory (CSFT) on the basis of the ${K\!Bc}$ algebra. Our solution is given in the pure-gauge form $\Psi=U{Q_\textrm{B}} U^{-1}$ by a unitary string field $U$, which we choose to satisfy two requirements. First, the energy density of the solution should reproduce that of the $(N+1)$-branes. Second, the equations of motion (EOM) of the solution should hold against the solution itself. In spite of the pure-gauge form of $\Psi$, these two conditions are non-trivial ones due to the singularity at $K=0$. For the $(N+1)$-brane solution, our $U$ is specified by $[N/2]$ independent real parameters $\alpha_k$. For the 2-brane ($N=1$), the solution is unique and reproduces the known one. We find that $\alpha_k$ satisfying the two conditions indeed exist as far as we have tested for various integer values of $N\ (=2, 3, 4, 5, \ldots)$. Our multi-brane solutions consisting only of the elements of the ${K\!Bc}$ algebra have the problem that the EOM is not satisfied against the Fock states and therefore are not complete ones. However, our construction should be an important step toward understanding the topological nature of CSFT, which has similarities to the Chern–Simons theory in three dimensions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Leonardo Santilli ◽  
Miguel Tierz

Abstract We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell’s integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of U(N ) pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Alexander Maloney ◽  
Edward Witten

Abstract Recent developments involving JT gravity in two dimensions indicate that under some conditions, a gravitational path integral is dual to an average over an ensemble of boundary theories, rather than to a specific boundary theory. For an example in one dimension more, one would like to compare a random ensemble of two-dimensional CFT’s to Einstein gravity in three dimensions. But this is difficult. For a simpler problem, here we average over Narain’s family of two-dimensional CFT’s obtained by toroidal compactification. These theories are believed to be the most general ones with their central charges and abelian current algebra symmetries, so averaging over them means picking a random CFT with those properties. The average can be computed using the Siegel-Weil formula of number theory and has some properties suggestive of a bulk dual theory that would be an exotic theory of gravity in three dimensions. The bulk dual theory would be more like U(1)2D Chern-Simons theory than like Einstein gravity.


1996 ◽  
Vol 11 (15) ◽  
pp. 2643-2660 ◽  
Author(s):  
R.E. GAMBOA SARAVÍ ◽  
G.L. ROSSINI ◽  
F.A. SCHAPOSNIK

We study parity violation in (2+1)-dimensional gauge theories coupled to massive fermions. Using the ζ function regularization approach we evaluate the ground state fermion current in an arbitrary gauge field background, showing that it gets two different contributions which violate parity invariance and induce a Chern–Simons term in the gauge field effective action. One is related to the well-known classical parity breaking produced by a fermion mass term in three dimensions; the other, already present for massless fermions, is related to peculiarities of gauge-invariant regularization in odd-dimensional spaces.


Sign in / Sign up

Export Citation Format

Share Document