scholarly journals Extended super BMS algebra of celestial CFT

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor ◽  
Bin Zhu

Abstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Wei Fan ◽  
Angelos Fotopoulos ◽  
Stephan Stieberger ◽  
Tomasz R. Taylor

Abstract Conformally soft gluons are conserved currents of the Celestial Conformal Field Theory (CCFT) and generate a Kac-Moody algebra. We study celestial amplitudes of Yang-Mills theory, which are Mellin transforms of gluon amplitudes and take the double soft limit of a pair of gluons. In this manner we construct the Sugawara energy-momentum tensor of the CCFT. We verify that conformally soft gauge bosons are Virasoro primaries of the CCFT under the Sugawara energy-momentum tensor. The Sugawara tensor though does not generate the correct conformal transformations for hard states. In Einstein-Yang- Mills theory, we consider an alternative construction of the energy-momentum tensor, similar to the double copy construction which relates gauge theory amplitudes with gravity ones. This energy momentum tensor has the correct properties to generate conformal transformations for both soft and hard states. We extend this construction to supertranslations.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2011 ◽  
Vol 26 (18) ◽  
pp. 3077-3090 ◽  
Author(s):  
BRADLY K. BUTTON ◽  
LEO RODRIGUEZ ◽  
CATHERINE A. WHITING ◽  
TUNA YILDIRIM

We show that the near horizon regime of a Kerr–Newman AdS (KNAdS) black hole, given by its two-dimensional analogue a là Robinson and Wilczek (Phys. Rev. Lett.95, 011303 (2005)), is asymptotically AdS2 and dual to a one-dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy–momentum tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein–Hawking entropy via Cardy's formula. Our derived central charge also agrees with the near extremal Kerr/CFT correspondence (Phys. Rev. D80, 124008 (2009)) in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two-dimensional analogue (RW2DA) to conformal matter.


2006 ◽  
Vol 21 (12) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. SHARIF

In this paper we discuss matter inheritance collineations by giving a complete classification of spherically symmetric static space–times by their matter inheritance symmetries. It is shown that when the energy–momentum tensor is degenerate, most of the cases yield infinite dimensional matter inheriting symmetries. It is worth mentioning here that two cases provide finite dimensional matter inheriting vectors even for the degenerate case. The nondegenerate case provides finite dimensional matter inheriting symmetries. We obtain different constraints on the energy–momentum tensor in each case. It is interesting to note that if the inheriting factor vanishes, matter inheriting collineations reduce to be matter collineations already available in the literature. This idea of matter inheritance collineations turn out to be the same as homotheties and conformal Killing vectors are for the metric tensor.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Alberto Escalante ◽  
Irving García

The covariant canonical analysis for Yang-Mills theory expressed as a BF-like action is performed. We study a BF-like action, that in spite of being the coupling of two topological terms, yield, on shell to Yang-Mills action. In addition, by using the results obtained in the covariant canonical approach we study the symmetries of the action, in particular we calculate its energy-momentum tensor obtaining the same tensor found for Yang-Mills theory; then we confirm those results by using Noether's theorem.


Sign in / Sign up

Export Citation Format

Share Document