scholarly journals MATTER INHERITANCE SYMMETRIES OF SPHERICALLY SYMMETRIC STATIC SPACE–TIMES

2006 ◽  
Vol 21 (12) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. SHARIF

In this paper we discuss matter inheritance collineations by giving a complete classification of spherically symmetric static space–times by their matter inheritance symmetries. It is shown that when the energy–momentum tensor is degenerate, most of the cases yield infinite dimensional matter inheriting symmetries. It is worth mentioning here that two cases provide finite dimensional matter inheriting vectors even for the degenerate case. The nondegenerate case provides finite dimensional matter inheriting symmetries. We obtain different constraints on the energy–momentum tensor in each case. It is interesting to note that if the inheriting factor vanishes, matter inheriting collineations reduce to be matter collineations already available in the literature. This idea of matter inheritance collineations turn out to be the same as homotheties and conformal Killing vectors are for the metric tensor.

Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


The flux integral for axisymmetric polar perturbations of static vacuum space-times, derived in an earlier paper directly from the relevant linearized Einstein equations, is rederived with the aid of the Einstein pseudo-tensor by a simple algorism. A similar earlier effort with the aid of the Landau–Lifshitz pseudo-tensor failed. The success with the Einstein pseudo-tensor is due to its special distinguishing feature that its second variation retains its divergence-free property provided only the equations governing the static space-time and its linear perturbations are satisfied. When one seeks the corresponding flux integral for Einstein‒Maxwell space-times, the common procedure of including, together with the pseudo-tensor, the energy‒momentum tensor of the prevailing electromagnetic field fails. But, a prescription due to R. Sorkin, of including instead a suitably defined ‘Noether operator’, succeeds.


Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2019 ◽  
Vol 28 (16) ◽  
pp. 2040004
Author(s):  
M. Sharif ◽  
Sobia Sadiq

This paper formulates the exact static anisotropic spherically symmetric solution of the field equations through gravitational decoupling. To accomplish this work, we add a new gravitational source in the energy–momentum tensor of a perfect fluid. The corresponding field equations, hydrostatic equilibrium equation as well as matching conditions are evaluated. We obtain the anisotropic model by extending the known Durgapal and Gehlot isotropic solution and examined the physical viability as well as the stability of the developed model. It is found that the system exhibits viable behavior for all fluid variables as well as energy conditions and the stability criterion is fulfilled.


2009 ◽  
Vol 24 (19) ◽  
pp. 1533-1542 ◽  
Author(s):  
M. SHARIF ◽  
KHADIJA IQBAL

In this paper, we discuss gravitational collapse of spherically symmetric spacetimes. We derive a general formalism by taking two arbitrary spherically symmetric spacetimes with g00 = 1. Israel's junction conditions are used to develop this formalism. The formulas for extrinsic curvature tensor are obtained. The general form of the surface energy–momentum tensor depending on extrinsic curvature tensor components is derived. This leads us to the surface energy density and the tangential pressure. The formalism is applied to two known spherically symmetric spacetimes. The results obtained show the regions for the collapse and expansion of the shell.


2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


2007 ◽  
Vol 22 (24) ◽  
pp. 1813-1819
Author(s):  
M. SHARIF ◽  
TARIQ ISMAEEL

We investigate matter collineations of plane symmetric spacetimes when the energy–momentum tensor is degenerate. There exists three interesting cases where the group of matter collineations is finite-dimensional. The matter collineations in these cases are either four, six or ten in which four are isometries and the rest are proper.


2006 ◽  
Vol 21 (15) ◽  
pp. 3213-3234 ◽  
Author(s):  
M. SHARIF ◽  
UMBER SHEIKH

This paper is devoted to the investigation of the consequences of timelike and spacelike matter inheritance vectors in specific forms of energy–momentum tensor, i.e. for string cosmology (string cloud and string fluid) and perfect fluid. Necessary and sufficient conditions are developed for a space–time with string cosmology and perfect fluid to admit a timelike matter inheritance vector, parallel to ua and spacelike matter inheritance vector, parallel to xa. We compare the outcome with the conditions of conformal Killing vectors. This comparison provides us the conditions for the existence of matter inheritance vector when it is also a conformal Killing vector. Finally, we discuss these results for the existence of matter inheritance vector in the special cases of the above mentioned space–times.


Sign in / Sign up

Export Citation Format

Share Document