scholarly journals Higgs boson CP-properties of the gluonic contributions in Higgs plus three jet production via gluon fusion at the LHC

2014 ◽  
Vol 2014 (10) ◽  
Author(s):  
Francisco Campanario ◽  
Michael Kubocz
2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
A. Buckley ◽  
X. Chen ◽  
J. Cruz-Martinez ◽  
S. Ferrario Ravasio ◽  
T. Gehrmann ◽  
...  

Abstract The data taken in Run II at the Large Hadron Collider have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at next-to-leading order and next-to-next-to-leading order QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the ∆yjj and/or mjj cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson pT, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Won Sang Cho ◽  
Hyung Do Kim ◽  
Dongsub Lee

2008 ◽  
Vol 790 (1-2) ◽  
pp. 1-27 ◽  
Author(s):  
Margarete Mühlleitner ◽  
Michael Spira

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Francesco G. Celiberto ◽  
Dmitry Yu. Ivanov ◽  
Mohammed M. A. Mohammed ◽  
Alessandro Papa

AbstractThe inclusive hadroproduction of a Higgs boson and of a jet, featuring large transverse momenta and well separated in rapidity, is proposed as a novel probe channel for the manifestation of the Balitsky–Fadin–Kuraev–Lipatov (BFKL) dynamics. Using the standard BFKL approach, with partial inclusion of next-to-leading order effects, predictions are presented for azimuthal Higgs-jet correlations and other observables, to be possibly compared with experimental analyses at the LHC and with theoretical predictions obtained in different schemes.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
X. Chen ◽  
T. Gehrmann ◽  
E. W. N. Glover ◽  
A. Huss

Abstract The rare three-body decay of a Higgs boson to a lepton-antilepton pair and a photon is starting to become experimentally accessible at the LHC. We investigate how higher-order QCD corrections to the dominant gluon-fusion production process impact on the fiducial cross sections in this specific Higgs decay mode for electrons and muons. Corrections up to NNLO QCD are found to be sizeable. They are generally uniform in kinematical variables related to the Higgs boson, but display several distinctive features in the kinematics of its individual decay products.


2018 ◽  
Vol 73 (1) ◽  
pp. 57-60
Author(s):  
A. V. Borisov ◽  
E. A. Stepanova

2012 ◽  
Vol 2012 (8) ◽  
Author(s):  
Tom Melia ◽  
Kirill Melnikov ◽  
Raoul Röntsch ◽  
Markus Schulze ◽  
Giulia Zanderighi
Keyword(s):  

2010 ◽  
Vol 25 (06) ◽  
pp. 423-429 ◽  
Author(s):  
ALFONSO R. ZERWEKH

In this paper, we propose an effective model scheme that describes the electroweak symmetry breaking sector by means of composite Higgs-like scalars, following the ideas of Minimal Walking Technicolor (MWT). We argue that, because of the general failure of Extended Technicolor (ETC) to explain the mass of the top quark, it is necessary to introduce two composite Higgs bosons: one of them originated by a MWT–ETC sector and the other produced by a Topcolor sector. We focus on the phenomenological differences between the light composite Higgs present in our model and the fundamental Higgs boson predicted by the Standard Model and their production at the LHC. We show that in this scheme the main production channel of the lighter Higgs boson is the associated production with a gauge boson and WW fusion but not the gluon–gluon fusion channel which is substantially suppressed.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract A search for a light pseudoscalar Higgs boson (a) decaying from the 125 GeV (or a heavier) scalar Higgs boson (H) is performed using the 2016 LHC proton-proton collision data at $$ \sqrt{s} $$ s = 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1, collected by the CMS experiment. The analysis considers gluon fusion and vector boson fusion production of the H, followed by the decay H → aa → μμττ, and considers pseudoscalar masses in the range 3.6 < ma< 21 GeV. Because of the large mass difference between the H and the a bosons and the small masses of the a boson decay products, both the μμ and the ττ pairs have high Lorentz boost and are collimated. The ττ reconstruction efficiency is increased by modifying the standard technique for hadronic τ lepton decay reconstruction to account for a nearby muon. No significant signal is observed. Model-independent limits are set at 95% confidence level, as a function of ma, on the branching fraction (ℬ) for H → aa → μμττ, down to 1.5 (2.0) × 10−4 for mH = 125 (300) GeV. Model-dependent limits on ℬ(H → aa) are set within the context of two Higgs doublets plus singlet models, with the most stringent results obtained for Type-III models. These results extend current LHC searches for heavier a bosons that decay to resolved lepton pairs and provide the first such bounds for an H boson with a mass above 125 GeV.


Sign in / Sign up

Export Citation Format

Share Document