scholarly journals Next-to-leading non-global logarithms in QCD

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Andrea Banfi ◽  
Frédéric A. Dreyer ◽  
Pier Francesco Monni

Abstract Non-global logarithms arise from the sensitivity of collider observables to soft radiation in limited angular regions of phase space. Their resummation to next-to-leading logarithmic (NLL) order has been a long standing problem and its solution is relevant in the context of precision all-order calculations in a wide variety of collider processes and observables. In this article, we consider observables sensitive only to soft radiation, characterised by the absence of Sudakov double logarithms, and we derive a set of integro-differential equations that describes the resummation of NLL soft corrections in the planar, large-Nc limit. The resulting set of evolution equations is derived in dimensional regularisation and we additionally provide a formulation that is manifestly finite in four space-time dimensions. The latter is suitable for a numerical integration and can be generalised to treat other infrared-safe observables sensitive solely to soft wide-angle radiation. We use the developed formalism to carry out a fixed-order calculation to $$ \mathcal{O}\left({\alpha}_s^2\right) $$ O α s 2 in full colour for both the transverse energy and energy distribution in the interjet region between two cone jets in e+e− collisions. We find that the expansion of the resummed cross section correctly reproduces the logarithmic structure of the full QCD result.

Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


1973 ◽  
Vol 34 (4) ◽  
pp. 372-373
Author(s):  
I. K. Kalugina ◽  
I. B. Keirim-Markus ◽  
A. K. Savinskii ◽  
I. V. Filyushkin

2005 ◽  
Vol 251 (1-4) ◽  
pp. 182-190 ◽  
Author(s):  
Xiaobing Zhang ◽  
Wei Lei ◽  
Min Liu ◽  
Laibin Zhang ◽  
Daniel den Engelsen ◽  
...  

2012 ◽  
Vol 20 ◽  
pp. 168-176
Author(s):  
LEONARD GAMBERG

We consider the cross section for semi-inclusive deep inelastic scattering in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel-weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Linda M. Carpenter ◽  
Taylor Murphy ◽  
Matthew J. Smylie

Abstract We reinterpret two recent LHC searches for events containing four top quarks $$ \left(t\overline{t}t\overline{t}\right) $$ t t ¯ t t ¯ in the context of supersymmetric models with Dirac gauginos and color-octet scalars (sgluons). We explore whether sgluon contributions to the four-top production cross section $$ \sigma \left( pp\to t\overline{t}t\overline{t}\right) $$ σ pp → t t ¯ t t ¯ can accommodate an excess of four-top events recently reported by the ATLAS collaboration. We also study constraints on these models from an ATLAS search for new phenomena with high jet multiplicity and significant missing transverse energy $$ \left({E}_{\mathrm{T}}^{\mathrm{miss}}\right) $$ E T miss sensitive to signals with four top quarks. We find that these two analyses provide complementary constraints, with the jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss search exceeding the four-top cross section measurement in sensitivity for sgluons heavier than about 800 GeV. We ultimately find that either a scalar or a pseudoscalar sgluon can currently fit the ATLAS excess in a range of reasonable benchmark scenarios, though a pseudoscalar in minimal Dirac gaugino models is ruled out. We finally offer sensitivity projections for these analyses at the HL-LHC, mapping the 5σ discovery potential in sgluon parameter space and computing exclusion limits at 95% CL in scenarios where no excess is found.


Sign in / Sign up

Export Citation Format

Share Document