scholarly journals 2d TQFTs and baby universes

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
John Gardiner ◽  
Stathis Megas

Abstract In this work, we extend the 2d topological gravity model of [1] to have as its bulk action any open/closed TQFT obeying Atiyah’s axioms. The holographic duals of these topological gravity models are ensembles of 1d topological theories with random dimension. Specifically, we find that the TQFT Hilbert space splits into sectors, between which correlators of boundary observables factorize, and that the corresponding sectors of the boundary theory have dimensions independently chosen from different Poisson distributions. As a special case, we study in detail the gravity model built from the bulk action of 2d Dijkgraaf-Witten theory, with or without end-of-the-world branes, and for arbitrary finite group G. The dual of this Dijkgraaf-Witten gravity model can be interpreted as a 1d topological theory whose Hilbert space is a random representation of G and whose aforementioned sectors are labeled by the irreducible representations of G.These holographic interpretations of our gravity models require projecting out negative-norm states from the baby universe Hilbert space, which in [1] was achieved by the (only seemingly) ad hoc solution of adding a nonlocal boundary term to the bulk action. In order to place their solution in the completely local framework of a TQFT with defects, we couple the boundaries of the gravity model to an auxiliary 2d TQFT in a non-gravitational (i.e. fixed topology) region. In this framework, the difficulty of negative-norm states can be remedied in a local way by the introduction of a defect line between the gravitational and non-gravitational regions. The gravity model is then holographically dual to an ensemble of boundary conditions in an open/closed TQFT without gravity.

2017 ◽  
Vol 16 (5) ◽  
pp. 437-443 ◽  
Author(s):  
C. V. Dolya

he paper considers a possibility to apply gravity models for calculation of intercity passenger transport corres- pondences which are implemented with the help of public transport. The Ukraine transportation system has been selected as an object of investigation and this approach extends application possibilities of the obtained results. Calibration coefficients used in calculation of the indicated correspondences are rather important and significant in case of forecasting passenger transport correspondences. Formalization of these factors is necessary for every transportation system if a calculation of pas-senger transport correspondences has been made for it. In this case searching for actual calibration parameters and other coef-ficients as components of gravitational models is a relevant objective of the given paper. Selection of the gravity model va- riant plays rather significant role in solution of this problem. The developed methods for calculation of passenger transport correspondences are proposed for their application in respect of various transport and trip types. The executed research works have made it possible to investigate a process pertaining to providing of services for passenger transportation while using public routes. The obtained characteristics on functioning of the studied system have allowed to assess the possibility for ap-plication of the known methods for calculation of passenger correspondences and analyze the quality of their application. Calibration coefficients have been empirically selected for calculation of the indicated correspondences while using method of gravity modeling. Formalization of previously unexplored parameters of gravity model component provides the possibility to apply the considered approach for calculation of passenger correspondences within the framework of the investigated trans-portion system. This makes it possible to plan and arrange interaction of various transport types and provides new data and knowledge on the studied system.


2018 ◽  
Vol 96 (11) ◽  
pp. 1173-1177
Author(s):  
Tomer Shushi

We consider a stochastic modification of the f(R) gravity models, and provide its important properties, including the gravity field equations for the model. We show a prediction in which particles are localized by a system of random gravitational potentials. As an important special case, we investigate a gravity model in the presence of a small stochastic space–time perturbation and provide its gravity field equations. Using the proposed model we examine the stochastic quantum mechanics interpretation, and obtain a novel Schrödinger equation with gravitational potential that is based on diffusion in a gravitational field. Furthermore, we provide a new interpretation to the wavefunction collapse. It seems that the stochastic f(R) gravity model causes decoherence of the spatial superposition state of particles.


2019 ◽  
Vol 492 (1) ◽  
pp. 420-430
Author(s):  
Jason M Pearl ◽  
Darren L Hitt

ABSTRACT To date several probes have been sent to explore the Solar system’s asteroids and comets. These bodies are often irregular in shape and to safely navigate probes in their vicinity accurate gravity models are required. For an arbitrarily shaped constant-density body, the gravitational field can be determined from the surface topology and bulk properties. This is achieved by replacing the body’s true geometry with a polyhedron that closely resembles it and for which analytic equations for the gravitational field exist. For some applications however, these equations are too computationally expensive and it can be beneficial to replace them with numerically amenable approximations. In this work, a numerical-quadrature-based model for the gravitational field of a polyhedron consisting of triangular facets is derived. The proposed approximate model is found to be faster than its analytic counterpart. The error of the approximation is found to be negligible for the potential and Laplacian calculations. The approximate model introduces singularities to the surface of the acceleration calculation degrading the solution at altitudes less than the average edge length of the polyhedron.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Dhruba Jyoti Gogoi ◽  
Umananda Dev Goswami

AbstractIn this paper, we have introduced a new f(R) gravity model as an attempt to have a model with more parametric control, so that the model can be used to explain the existing problems as well as to explore new directions in physics of gravity, by properly constraining it with recent observational data. Here basic aim is to study the properties of Gravitational Waves (GWs) in this new model. In f(R) gravity metric formalism, the model shows the existence of scalar degree of freedom as like other f(R) gravity models. Due to this reason, there is a scalar mode of polarization of GWs present in the theory. This polarization mode exists in a mixed state, of which one is transverse massless breathing mode with non-vanishing trace and the other is massive longitudinal mode. The longitudinal mode being massive, travels at speed less than the usual tensor modes found in General Relativity (GR). Moreover, for a better understanding of the model, we have studied the potential and mass of scalar graviton in both Jordan frame and Einstein frame. This model can pass the solar system tests and can explain primordial and present dark energy. Also, we have put constraints on the model. It is found that the correlation function for the third mode of polarization under certain mass scale predicted by the model agrees well with the recent data of Pulsar Timing Arrays. It seems that this new model would be useful in dealing with different existing issues in the areas of astrophysics and cosmology.


Author(s):  
Tim Schlaich ◽  
Abigail L. Horn ◽  
Marcel Fuhrmann ◽  
Hanno Friedrich

Computational traceback methodologies are important tools for investigations of widespread foodborne disease outbreaks as they assist investigators to determine the causative outbreak location and food item. In modeling the entire food supply chain from farm to fork, however, these methodologies have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in the area adjacent to their home location. This paper aims to fill this gap by introducing a gravity-based approach to model food-flows from supermarkets to consumers and demonstrating how models of consumer shopping behavior can be used to improve computational methodologies to infer the source of an outbreak of foodborne disease. To demonstrate our approach, we develop and calibrate a gravity model of German retail shopping behavior at the postal-code level. Modeling results show that on average about 70 percent of all groceries are sourced from non-home zip codes. The value of considering shopping behavior in computational approaches for inferring the source of an outbreak is illustrated through an application example to identify a retail brand source of an outbreak. We demonstrate a significant increase in the accuracy of a network-theoretic source estimator for the outbreak source when the gravity model is included in the food supply network compared with the baseline case when contaminated individuals are assumed to shop only in their home location. Our approach illustrates how gravity models can enrich computational inference models for identifying the source (retail brand, food item, location) of an outbreak of foodborne disease. More broadly, results show how gravity models can contribute to computational approaches to model consumer shopping interactions relating to retail food environments, nutrition, and public health.


2020 ◽  
Author(s):  
Américo Ambrózio ◽  
Marco Restano ◽  
Jérôme Benveniste

<p>The scope of this work is to showcase the BRAT (Broadview Radar Altimetry Toolbox) and GUT (GOCE User Toolbox) toolboxes.</p><p>The Broadview Radar Altimetry Toolbox (BRAT) is a collection of tools designed to facilitate the processing of radar altimetry data from all previous and current altimetry missions, including Sentinel-3A L1 and L2 products. A tutorial is included providing plenty of use cases on Geodesy & Geophysics, Oceanography, Coastal Zone, Atmosphere, Wind & Waves, Hydrology, Land, Ice and Climate, which can also be consulted in  http://www.altimetry.info/radar-altimetry-tutorial/.</p><p>BRAT's last version (4.2.1) was released in June 2018. Based on the community feedback, the front-end has been further improved and simplified whereas the capability to use BRAT in conjunction with MATLAB/IDL or C/C++/Python/Fortran, allowing users to obtain desired data bypassing the data-formatting hassle, remains unchanged. Several kinds of computations can be done within BRAT involving the combination of data fields, that can be saved for future uses, either by using embedded formulas including those from oceanographic altimetry, or by implementing ad-hoc Python modules created by users to meet their needs. BRAT can also be used to quickly visualise data, or to translate data into other formats, e.g. from NetCDF to raster images.</p><p>The GOCE User Toolbox (GUT) is a compilation of tools for the use and the analysis of GOCE gravity field models. It facilitates using, viewing and post-processing GOCE L2 data and allows gravity field data, in conjunction and consistently with any other auxiliary data set, to be pre-processed by beginners in gravity field processing, for oceanographic and hydrologic as well as for solid earth applications at both regional and global scales. Hence, GUT facilitates the extensive use of data acquired during GRACE and GOCE missions.</p><p>In the current version (3.2), GUT has been outfitted with a graphical user interface allowing users to visually program data processing workflows. Further enhancements aiming at facilitating the use of gradients, the anisotropic diffusive filtering, and the computation of Bouguer and isostatic gravity anomalies have been introduced. Packaged with GUT is also GUT's Variance/Covariance Matrix (VCM) tool, which enables non-experts to compute and study, with relative ease, the formal errors of quantities – such as geoid height, gravity anomaly/disturbance, radial gravity gradient, vertical deflections – that may be derived from the GOCE gravity models.</p><p>On our continuous endeavour to provide better and more useful tools, we intend to integrate BRAT into SNAP (Sentinel Application Platform). This will allow our users to easily explore the synergies between both toolboxes. During 2020 we will start going from separate toolboxes to a single one.</p><p>BRAT and GUT toolboxes can be freely downloaded, along with ancillary material, at https://earth.esa.int/brat and https://earth.esa.int/gut.</p>


1994 ◽  
Vol 99 (C12) ◽  
pp. 24421 ◽  
Author(s):  
R. S. Nerem ◽  
F. J. Lerch ◽  
J. A. Marshall ◽  
E. C. Pavlis ◽  
B. H. Putney ◽  
...  

Science ◽  
2014 ◽  
Vol 346 (6205) ◽  
pp. 65-67 ◽  
Author(s):  
David T. Sandwell ◽  
R. Dietmar Müller ◽  
Walter H. F. Smith ◽  
Emmanuel Garcia ◽  
Richard Francis

Gravity models are powerful tools for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. We combined new radar altimeter measurements from satellites CryoSat-2 and Jason-1 with existing data to construct a global marine gravity model that is two times more accurate than previous models. We found an extinct spreading ridge in the Gulf of Mexico, a major propagating rift in the South Atlantic Ocean, abyssal hill fabric on slow-spreading ridges, and thousands of previously uncharted seamounts. These discoveries allow us to understand regional tectonic processes and highlight the importance of satellite-derived gravity models as one of the primary tools for the investigation of remote ocean basins.


1983 ◽  
Vol 15 (8) ◽  
pp. 1121-1132 ◽  
Author(s):  
A S Fotheringham

Aspects of destination choice which concern relationships between destinations are explored in the context of a production-constrained gravity model. It is shown that, if competition exists between destinations or, alternatively, if agglomeration effects are present, the gravity model is misspecified and estimated distance-decay parameters obtained from the model are related to spatial structure.


2015 ◽  
Vol 30 (26) ◽  
pp. 1550126 ◽  
Author(s):  
B. Forghan ◽  
M. R. Tanhayi

In this paper, we use Krein regularization to study certain standard computations in quantum chromodynamics (QCD). In this method, the auxiliary modes[Formula: see text]— those with negative norms[Formula: see text]— are employed to calculate the quark self-energy, vacuum polarizations and vertex functions. We explicitly show that after making use of these modes and by taking into account the quantum metric fluctuation for the problems at hand, the conventional results can indeed be reproduced; but with the advantage of finite answers which require fewer mathematical procedures. An obvious merit of this approach is that the theory is naturally renormalized. The ultraviolet (UV) divergences disappear due to the presence of negative norm state, similar to the Pauli–Villars regularization method. We compare the answers of Krein regularization with the results of calculations which have been done in Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document