Randomness in modified general relativity theory: The stochastic f(R) gravity model

2018 ◽  
Vol 96 (11) ◽  
pp. 1173-1177
Author(s):  
Tomer Shushi

We consider a stochastic modification of the f(R) gravity models, and provide its important properties, including the gravity field equations for the model. We show a prediction in which particles are localized by a system of random gravitational potentials. As an important special case, we investigate a gravity model in the presence of a small stochastic space–time perturbation and provide its gravity field equations. Using the proposed model we examine the stochastic quantum mechanics interpretation, and obtain a novel Schrödinger equation with gravitational potential that is based on diffusion in a gravitational field. Furthermore, we provide a new interpretation to the wavefunction collapse. It seems that the stochastic f(R) gravity model causes decoherence of the spatial superposition state of particles.

2021 ◽  
Vol 95 (3) ◽  
Author(s):  
Laura Sánchez ◽  
Jonas Ågren ◽  
Jianliang Huang ◽  
Yan Ming Wang ◽  
Jaakko Mäkinen ◽  
...  

AbstractIn 2015, the International Association of Geodesy defined the International Height Reference System (IHRS) as the conventional gravity field-related global height system. The IHRS is a geopotential reference system co-rotating with the Earth. Coordinates of points or objects close to or on the Earth’s surface are given by geopotential numbersC(P) referring to an equipotential surface defined by the conventional valueW0 = 62,636,853.4 m2 s−2, and geocentric Cartesian coordinatesXreferring to the International Terrestrial Reference System (ITRS). Current efforts concentrate on an accurate, consistent, and well-defined realisation of the IHRS to provide an international standard for the precise determination of physical coordinates worldwide. Accordingly, this study focuses on the strategy for the realisation of the IHRS; i.e. the establishment of the International Height Reference Frame (IHRF). Four main aspects are considered: (1) methods for the determination of IHRF physical coordinates; (2) standards and conventions needed to ensure consistency between the definition and the realisation of the reference system; (3) criteria for the IHRF reference network design and station selection; and (4) operational infrastructure to guarantee a reliable and long-term sustainability of the IHRF. A highlight of this work is the evaluation of different approaches for the determination and accuracy assessment of IHRF coordinates based on the existing resources, namely (1) global gravity models of high resolution, (2) precise regional gravity field modelling, and (3) vertical datum unification of the local height systems into the IHRF. After a detailed discussion of the advantages, current limitations, and possibilities of improvement in the coordinate determination using these options, we define a strategy for the establishment of the IHRF including data requirements, a set of minimum standards/conventions for the determination of potential coordinates, a first IHRF reference network configuration, and a proposal to create a component of the International Gravity Field Service (IGFS) dedicated to the maintenance and servicing of the IHRS/IHRF.


Author(s):  
Аnatoly М. Shutyi ◽  

Based on the general principle of the unity of the nature of interacting entities and the principle of the relativity of motion, as well as following the requirement of an indissoluble and conditioning connection of space and time, the model of a discrete space-time consisting of identical interacting particles is proposed as the most acceptable one. We consider the consequences of the discreteness of space, such as: the occurrence of time quanta, the limiting speed of signal propa­gation, and the constancy of this speed, regardless of the motion of the reference frame. Regularly performed acts of particles of space-time (PST) interaction en­sure the connectivity of space, set the quantum of time and the maximum speed – the speed of light. In the process of PST communication, their mixing occurs, which ensures the relativity of inertial motion, and can also underlie quantum uncertainty. In this case, elementary particles are spatial configurations of an excited “lattice” of PST, and particles with mass must contain loop struc­tures in their configuration. A new interpretation of quantum mechanics is pro­posed, according to which the wave function determines the probability of de­struction of a spatial configuration (representing a quantum object) in its corresponding region, which leads to the contraction of the entire structure to a given, detectable component. Particle entanglement is explained by the appear­ance of additional links between the PST – the appearance of a local coordinate along which the distance between entangled objects does not increase. It is shown that the movement of a body should lead to an asymmetry of the tension of the bonds between the PST – to the asymmetry of its effective gravity, the es­tablishment of which is one of the possibilities for experimental verification of the proposed model. It is shown that the constancy of the speed of light in a vac­uum and the appearance of relativistic effects are based on ensuring the connec­tivity of space-time, i.e. striving to prevent its rupture.


2017 ◽  
Vol 16 (5) ◽  
pp. 437-443 ◽  
Author(s):  
C. V. Dolya

he paper considers a possibility to apply gravity models for calculation of intercity passenger transport corres- pondences which are implemented with the help of public transport. The Ukraine transportation system has been selected as an object of investigation and this approach extends application possibilities of the obtained results. Calibration coefficients used in calculation of the indicated correspondences are rather important and significant in case of forecasting passenger transport correspondences. Formalization of these factors is necessary for every transportation system if a calculation of pas-senger transport correspondences has been made for it. In this case searching for actual calibration parameters and other coef-ficients as components of gravitational models is a relevant objective of the given paper. Selection of the gravity model va- riant plays rather significant role in solution of this problem. The developed methods for calculation of passenger transport correspondences are proposed for their application in respect of various transport and trip types. The executed research works have made it possible to investigate a process pertaining to providing of services for passenger transportation while using public routes. The obtained characteristics on functioning of the studied system have allowed to assess the possibility for ap-plication of the known methods for calculation of passenger correspondences and analyze the quality of their application. Calibration coefficients have been empirically selected for calculation of the indicated correspondences while using method of gravity modeling. Formalization of previously unexplored parameters of gravity model component provides the possibility to apply the considered approach for calculation of passenger correspondences within the framework of the investigated trans-portion system. This makes it possible to plan and arrange interaction of various transport types and provides new data and knowledge on the studied system.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


2021 ◽  
Vol 10 (10) ◽  
pp. 698
Author(s):  
Ruren Li ◽  
Shoujia Li ◽  
Zhiwei Xie

Integration development of urban agglomeration is important for regional economic research and management. In this paper, a method was proposed to study the integration development of urban agglomeration by trajectory gravity model. It can analyze the gravitational strength of the core city to other cities and characterize the spatial trajectory of its gravitational direction, expansion, etc. quantitatively. The main idea is to do the fitting analysis between the urban axes and the gravitational lines. The correlation coefficients retrieved from the fitting analysis can reflect the correlation of two indices. For the different cities in the same year, a higher value means a stronger relationship. There is a clear gravitational force between the cities when the value above 0.75. For the most cities in different years, the gravitational force between the core city with itself is increasing by years. At the same time, the direction of growth of the urban axes tends to increase in the direction of the gravitational force between cities. There is a clear tendency for the trajectories of the cities to move closer together. The proposed model was applied to the integration development of China Liaoning central urban agglomeration from 2008 to 2016. The results show that cities are constantly attracted to each other through urban gravity.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850002 ◽  
Author(s):  
Murli Manohar Verma ◽  
Bal Krishna Yadav

We solve the field equations of modified gravity for [Formula: see text] model in metric formalism. Further, we obtain the fixed points of the dynamical system in phase-space analysis of [Formula: see text] models, both with and without the effects of radiation. The stability of these points is studied against the perturbations in a smooth spatial background by applying the conditions on the eigenvalues of the matrix obtained in the linearized first-order differential equations. Following this, these fixed points are used for analyzing the dynamics of the system during the radiation, matter and acceleration-dominated phases of the universe. Certain linear and quadratic forms of [Formula: see text] are determined from the geometrical and physical considerations and the behavior of the scale factor is found for those forms. Further, we also determine the Hubble parameter [Formula: see text], the Ricci scalar [Formula: see text] and the scale factor [Formula: see text] for these cosmic phases. We show the emergence of an asymmetry of time from the dynamics of the scalar field exclusively owing to the [Formula: see text] gravity in the Einstein frame that may lead to an arrow of time at a classical level.


2019 ◽  
Vol 492 (1) ◽  
pp. 420-430
Author(s):  
Jason M Pearl ◽  
Darren L Hitt

ABSTRACT To date several probes have been sent to explore the Solar system’s asteroids and comets. These bodies are often irregular in shape and to safely navigate probes in their vicinity accurate gravity models are required. For an arbitrarily shaped constant-density body, the gravitational field can be determined from the surface topology and bulk properties. This is achieved by replacing the body’s true geometry with a polyhedron that closely resembles it and for which analytic equations for the gravitational field exist. For some applications however, these equations are too computationally expensive and it can be beneficial to replace them with numerically amenable approximations. In this work, a numerical-quadrature-based model for the gravitational field of a polyhedron consisting of triangular facets is derived. The proposed approximate model is found to be faster than its analytic counterpart. The error of the approximation is found to be negligible for the potential and Laplacian calculations. The approximate model introduces singularities to the surface of the acceleration calculation degrading the solution at altitudes less than the average edge length of the polyhedron.


2020 ◽  
Vol 18 (01) ◽  
pp. 2150016
Author(s):  
Brisa Terezón ◽  
Miguel De Campos

Although it is not a fundamental question, determining exact and general solutions for a given theory has advantages over a numerical integration in many specific cases. Of course, respecting the peculiarities of the problem. Revisiting the integration of the General Relativity Theory field equations for the Kantowski–Sachs spacetime describes a homogeneous but anisotropic universe whose spatial section has the topology of [Formula: see text], we integrate the equations for arbitrary curvature parameter and write the solutions considering the process of gravitational collapse. We took the opportunity and made some comments involving some features of the model such as energy density, shear, viscosity and the production of gravitational waves via Petrov classification.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Dhruba Jyoti Gogoi ◽  
Umananda Dev Goswami

AbstractIn this paper, we have introduced a new f(R) gravity model as an attempt to have a model with more parametric control, so that the model can be used to explain the existing problems as well as to explore new directions in physics of gravity, by properly constraining it with recent observational data. Here basic aim is to study the properties of Gravitational Waves (GWs) in this new model. In f(R) gravity metric formalism, the model shows the existence of scalar degree of freedom as like other f(R) gravity models. Due to this reason, there is a scalar mode of polarization of GWs present in the theory. This polarization mode exists in a mixed state, of which one is transverse massless breathing mode with non-vanishing trace and the other is massive longitudinal mode. The longitudinal mode being massive, travels at speed less than the usual tensor modes found in General Relativity (GR). Moreover, for a better understanding of the model, we have studied the potential and mass of scalar graviton in both Jordan frame and Einstein frame. This model can pass the solar system tests and can explain primordial and present dark energy. Also, we have put constraints on the model. It is found that the correlation function for the third mode of polarization under certain mass scale predicted by the model agrees well with the recent data of Pulsar Timing Arrays. It seems that this new model would be useful in dealing with different existing issues in the areas of astrophysics and cosmology.


Sign in / Sign up

Export Citation Format

Share Document