scholarly journals A CFT distance conjecture

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Eric Perlmutter ◽  
Leonardo Rastelli ◽  
Cumrun Vafa ◽  
Irene Valenzuela

Abstract We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. We focus on conformal manifolds with limiting points at infinite distance with respect to the Zamolodchikov metric. Our central conjecture is that all theories at infinite distance possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. Stated geometrically, the diameter of a non-compact conformal manifold must diverge logarithmically in the higher-spin gap. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. Interpreted gravitationally, they imply that approaching infinite distance in moduli space at fixed AdS radius, a tower of higher-spin fields becomes massless at an exponential rate that is bounded from below in Planck units. We discuss further implications for conformal manifolds of superconformal field theories in three and four dimensions.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Matteo Sacchi ◽  
Orr Sela ◽  
Gabi Zafrir

Abstract Building on recent progress in the study of compactifications of 6d (1, 0) superconformal field theories (SCFTs) on Riemann surfaces to 4d$$ \mathcal{N} $$ N = 1 theories, we initiate a systematic study of compactifications of 5d$$ \mathcal{N} $$ N = 1 SCFTs on Riemann surfaces to 3d$$ \mathcal{N} $$ N = 2 theories. Specifically, we consider the compactification of the so-called rank 1 Seiberg $$ {E}_{N_f+1} $$ E N f + 1 SCFTs on tori and tubes with flux in their global symmetry, and put the resulting 3d theories to various consistency checks. These include matching the (usually enhanced) IR symmetry of the 3d theories with the one expected from the compactification, given by the commutant of the flux in the global symmetry of the corresponding 5d SCFT, and identifying the spectrum of operators and conformal manifolds predicted by the 5d picture. As the models we examine are in three dimensions, we encounter novel elements that are not present in compactifications to four dimensions, notably Chern-Simons terms and monopole superpotentials, that play an important role in our construction. The methods used in this paper can also be used for the compactification of any other 5d SCFT that has a deformation leading to a 5d gauge theory.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Francesco Galvagno ◽  
Michelangelo Preti

Abstract We consider a family of $$ \mathcal{N} $$ N = 2 superconformal field theories in four dimensions, defined as ℤq orbifolds of $$ \mathcal{N} $$ N = 4 Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, using both the matrix model approach arising from supersymmetric localisation on the four-sphere and explicit field theory calculations on the flat space using the $$ \mathcal{N} $$ N = 1 superspace formalism. We implement a highly efficient algorithm to produce a large number of results for finite values of N , exploiting the symmetries of the quiver to reduce the complexity of the mixing between the operators. Finally the interplay with the field theory calculations allows to isolate special observables which deviate from $$ \mathcal{N} $$ N = 4 only at high orders in perturbation theory.


2011 ◽  
Vol 08 (03) ◽  
pp. 511-556 ◽  
Author(s):  
GIUSEPPE BANDELLONI

The relativistic symmetric tensor fields are, in four dimensions, the right candidates to describe Higher Spin Fields. Their highest spin content is isolated with the aid of covariant conditions, discussed within a group theory framework, in which auxiliary fields remove the lower intrinsic angular momenta sectors. These conditions are embedded within a Lagrangian Quantum Field theory which describes an Higher Spin Field interacting with a Classical background. The model is invariant under a (B.R.S.) symmetric unconstrained tensor extension of the reparametrization symmetry, which include the Fang–Fronsdal algebra in a well defined limit. However, the symmetry setting reveals that the compensator field, which restore the Fang–Fronsdal symmetry of the free equations of motion, is in the existing in the framework and has a relevant geometrical meaning. The Ward identities coming from this symmetry are discussed. Our constraints give the result that the space of the invariant observables is restricted to the ones constructed with the Highest Spin Field content. The quantum extension of the symmetry reveals that no new anomaly is present. The role of the compensator field in this result is fundamental.


1999 ◽  
Vol 14 (06) ◽  
pp. 815-843 ◽  
Author(s):  
M. J. DUFF

There has recently been a revival of interest in anti-de-Sitter space (AdS), brought about by the conjectured duality between physics in the bulk of AdS and a conformal field theory on the boundary. Since the whole subject of branes, singletons and superconformal field theories on the AdS boundary was an active area of research about ten years ago, we begin with a historical review, including the idea of the "membrane at the end of the universe." We then compare the old and new approaches and discuss some new results on AdS 5 × S5 and AdS 3 × S3.


Sign in / Sign up

Export Citation Format

Share Document