scholarly journals Shocks and information exchange in de Sitter space

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
L. Aalsma ◽  
A. Cole ◽  
E. Morvan ◽  
J. P. van der Schaar ◽  
G. Shiu

Abstract We discuss some implications of recent progress in understanding the black hole information paradox for complementarity in de Sitter space. Extending recent work by two of the authors, we describe a bulk procedure that allows information expelled through the cosmological horizon to be received by an antipodal observer. Generically, this information transfer takes a scrambling time t = H−1 log(SdS). We emphasize that this procedure relies crucially on selection of the Bunch-Davies vacuum state, interpreted as the thermofield double state that maximally entangles two antipodal static patches. The procedure also requires the presence of an (entangled) energy reservoir, created by the collection of Hawking modes from the cosmological horizon. We show how this procedure avoids a cloning paradox and comment on its implications.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lars Aalsma ◽  
Watse Sybesma

Abstract Recent works have revealed that quantum extremal islands can contribute to the fine-grained entropy of black hole radiation reproducing the unitary Page curve. In this paper, we use these results to assess if an observer in de Sitter space can decode information hidden behind their cosmological horizon. By computing the fine-grained entropy of the Gibbons-Hawking radiation in a region where gravity is weak we find that this is possible, but the observer’s curiosity comes at a price. At the same time the island appears, which happens much earlier than the Page time, a singularity forms which the observer will eventually hit. We arrive at this conclusion by studying de Sitter space in Jackiw-Teitelboim gravity. We emphasize the role of the observer collecting radiation, breaking the thermal equilibrium studied so far in the literature. By analytically solving for the backreacted geometry we show how an island appears in this out-of-equilibrium state.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Arjun Kar ◽  
Tomonori Ugajin

Abstract We consider black holes in 2d de Sitter JT gravity coupled to a CFT, and entangled with matter in a disjoint non-gravitating universe. Tracing out the entangling matter leaves the CFT in a density matrix whose stress tensor backreacts on the de Sitter geometry, lengthening the wormhole behind the black hole horizon. Naively, the entropy of the entangling matter increases without bound as the strength of the entanglement increases, but the monogamy property predicts that this growth must level off. We compute the entropy via the replica trick, including wormholes between the replica copies of the de Sitter geometry, and find a competition between conventional field theory entanglement entropy and the surface area of extremal “islands” in the de Sitter geometry. The black hole and cosmological horizons both play a role in generating such islands in the backreacted geometry, and have the effect of stabilizing the entropy growth as required by monogamy. We first show this in a scenario in which the de Sitter spatial section has been decompactified to an interval. Then we consider the compact geometry, and argue for a novel interpretation of the island formula in the context of closed universes that recovers the Page curve. Finally, we comment on the application of our construction to the cosmological horizon in empty de Sitter space.


2018 ◽  
Vol 168 ◽  
pp. 01007 ◽  
Author(s):  
Yasha Neiman

This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


1996 ◽  
Vol 11 (18) ◽  
pp. 1467-1473 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
NORISUKE SAKAI ◽  
MASAMICHI SATO

The SL (2, R)/Z WZW orbifold which describes the (2+1)-dimensional black hole approaching anti-de Sitter space asymptotically. We study the 1 → 1 tachyon scattering off the rotating black hole background and calculate the Hawking temperature using the Bogoliubov transformation.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641016 ◽  
Author(s):  
Rafael P. Bernar ◽  
Luís C. B. Crispino ◽  
Atsushi Higuchi

In [R. P. Bernar, L. C. B. Crispino and A. Higuchi, Phys. Rev. D 90 (2014) 024045.] we investigated gravitational perturbations in the background of de Sitter spacetime in arbitrary dimensions. More specifically, we used a gauge-invariant formalism to describe the perturbations inside the cosmological horizon, i.e. in the static patch of de Sitter spacetime. After a gauge-fixed quantization procedure, the two-point function in the Bunch–Davies-like vacuum state was shown to be infrared finite and invariant under time-translation. In this work, we give details of the calculations to obtain the graviton two-point function in 3 + 1 dimensions.


Sign in / Sign up

Export Citation Format

Share Document