scholarly journals A generalization of decomposition in orbifolds

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Daniel G. Robbins ◽  
Eric Sharpe ◽  
Thomas Vandermeulen

Abstract This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theories. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds.

2013 ◽  
Vol 104 (4) ◽  
pp. 465-493 ◽  
Author(s):  
Francesco Benini ◽  
Richard Eager ◽  
Kentaro Hori ◽  
Yuji Tachikawa

2019 ◽  
Vol 34 (30) ◽  
pp. 1950181 ◽  
Author(s):  
Wei Gu ◽  
Hadi Parsian ◽  
Eric Sharpe

In this paper, we extend the non-Abelian mirror proposal of two of the authors from two-dimensional gauge theories with connected gauge groups to the case of [Formula: see text] gauge groups with discrete theta angles. We check our proposed extension by counting and comparing vacua in mirrors to the known dual two-dimensional [Formula: see text] gauge theories. The mirrors in question are Landau–Ginzburg orbifolds, and for mirrors to [Formula: see text] gauge theories, the critical loci of the mirror superpotential often intersect fixed-point loci, so that to count vacua, one must take into account the twisted sector contributions. This is a technical novelty relative to the mirrors of gauge theories with connected gauge groups, for which critical loci do not intersect fixed-point loci and so no orbifold twisted sector contributions are pertinent. The vacuum computations turn out to be a rather intricate test of the proposed mirrors, in particular as untwisted sector states in the mirror to one theory are often exchanged with twisted sector states in the mirror to the dual. In cases with nontrivial IR limits, we also check that the central charges computed from the Landau–Ginzburg mirrors match those expected for the IR SCFTs.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Wei Gu ◽  
Eric Sharpe ◽  
Hao Zou

Abstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU(k)/ℤk, SO(2k)/ℤ2, Sp(2k)/ℤ2, E6/ℤ3, and E7/ℤ2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G/K gauge theory for K a subgroup of the center of G. In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles.


Author(s):  
Markus Krötzsch

To reason with existential rules (a.k.a. tuple-generating dependencies), one often computes universal models. Among the many such models of different structure and cardinality, the core is arguably the “best”. Especially for finitely satisfiable theories, where the core is the unique smallest universal model, it has advantages in query answering, non-monotonic reasoning, and data exchange. Unfortunately, computing cores is difficult and not supported by most reasoners. We therefore propose ways of computing cores using practically implemented methods from rule reasoning and answer set programming. Our focus is on cases where the standard chase algorithm produces a core. We characterise this desirable situation in general terms that apply to a large class of cores, derive concrete approaches for decidable special cases, and generalise these approaches to non-monotonic extensions of existential rules.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Fabrizio Del Monte ◽  
Pavlo Gavrylenko ◽  
Alessandro Tanzini

AbstractWe study the relation between class $$\mathcal {S}$$ S theories on punctured tori and isomonodromic deformations of flat SL(N) connections on the two-dimensional torus with punctures. Turning on the self-dual $$\Omega $$ Ω -background corresponds to a deautonomization of the Seiberg–Witten integrable system which implies a specific time dependence in its Hamiltonians. We show that the corresponding $$\tau $$ τ -function is proportional to the dual gauge theory partition function, the proportionality factor being a nontrivial function of the solution of the deautonomized Seiberg–Witten integrable system. This is obtained by mapping the isomonodromic deformation problem to $$W_N$$ W N free fermion correlators on the torus.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We propose dualities of $$ \mathcal{N} $$ N = (0, 2) supersymmetric boundary conditions for 3d $$ \mathcal{N} $$ N = 2 gauge theories with orthogonal and symplectic gauge groups. We show that the boundary ’t Hooft anomalies and half-indices perfectly match for each pair of the proposed dual boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document