scholarly journals New AdS2 supergravity duals of 4d SCFTs with defects

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Yolanda Lozano ◽  
Nicolò Petri ◽  
Cristian Risco

Abstract We construct new families of AdS2× S2× S2 solutions with 4 supercharges in Type II supergravities. We show that subclasses of these solutions can be interpreted in terms of defect branes embedded in 4d $$ \mathcal{N} $$ N = 4 SYM, or orbifolds thereof. This is explicitly realised by showing that the solutions asymptote locally to AdS5× S5/ℤn, in Type IIB, or its T-dual background, in Type IIA. The latter is a Gaiotto-Maldacena geometry realised on an intersection of D4 and NS5 branes. We extend the Type IIA solutions to include D6 branes, and interpret them as describing backreacted baryon vertices within 4d $$ \mathcal{N} $$ N = 2 CFTs living in D4-NS5-D6 intersections. We propose explicit quiver quantum mechanics in which the defect branes play the role of colour branes, with the D4 branes of the D4-NS5-D6 intersection becoming flavour branes. These quivers are used to compute the degeneracies of the ground states of the dual super conformal quantum mechanics, that are shown to agree with the holographic expressions.

Diabetes ◽  
1987 ◽  
Vol 36 (3) ◽  
pp. 274-283 ◽  
Author(s):  
A. D. Baron ◽  
L. Schaeffer ◽  
P. Shragg ◽  
O. G. Kolterman

Diabetes ◽  
1987 ◽  
Vol 36 (11) ◽  
pp. 1341-1350 ◽  
Author(s):  
J. P. Felber ◽  
E. Ferrannini ◽  
A. Golay ◽  
H. U. Meyer ◽  
D. Theibaud ◽  
...  

Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hirotaka Hayashi ◽  
Takuya Okuda ◽  
Yutaka Yoshida

Abstract We compute by supersymmetric localization the expectation values of half-BPS ’t Hooft line operators in $$ \mathcal{N} $$ N = 2 U(N ), SO(N ) and USp(N ) gauge theories on S1 × ℝ3 with an Ω-deformation. We evaluate the non-perturbative contributions due to monopole screening by calculating the supersymmetric indices of the corresponding supersymmetric quantum mechanics, which we obtain by realizing the gauge theories and the ’t Hooft operators using branes and orientifolds in type II string theories.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1641
Author(s):  
Emily E. S. Brettschneider ◽  
Masaki Terabe

Glioblastoma is an aggressive and deadly cancer, but to date, immunotherapies have failed to make significant strides in improving prognoses for glioblastoma patients. One of the current challenges to developing immunological interventions for glioblastoma is our incomplete understanding of the numerous immunoregulatory mechanisms at play in the glioblastoma tumor microenvironment. We propose that Natural Killer T (NKT) cells, which are unconventional T lymphocytes that recognize lipid antigens presented by CD1d molecules, may play a key immunoregulatory role in glioblastoma. For example, evidence suggests that the activation of type I NKT cells can facilitate anti-glioblastoma immune responses. On the other hand, type II NKT cells are known to play an immunosuppressive role in other cancers, as well as to cross-regulate type I NKT cell activity, although their specific role in glioblastoma remains largely unclear. This review provides a summary of our current understanding of NKT cells in the immunoregulation of glioblastoma as well as highlights the involvement of NKT cells in other cancers and central nervous system diseases.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Roberto A. Lineros ◽  
Mathias Pierre

Abstract We explore the connection between Dark Matter and neutrinos in a model inspired by radiative Type-II seessaw and scotogenic scenarios. In our model, we introduce new electroweakly charged states (scalars and a vector-like fermion) and impose a discrete ℤ2 symmetry. Neutrino masses are generated at the loop level and the lightest ℤ2-odd neutral particle is stable and it can play the role of a Dark Matter candidate. We perform a numerical analysis of the model showing that neutrino masses and flavour structure can be reproduced in addition to the correct dark matter density, with viable DM masses from 700 GeV to 30 TeV. We explore direct and indirect detection signatures and show interesting detection prospects by CTA, Darwin and KM3Net and highlight the complementarity between these observables.


2013 ◽  
Vol 450 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Shankha Satpathy ◽  
Arash Nabbi ◽  
Karl Riabowol

The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.


2011 ◽  
Vol 701 (4) ◽  
pp. 503-507 ◽  
Author(s):  
Claudio Chamon ◽  
Roman Jackiw ◽  
So-Young Pi ◽  
Luiz Santos

Sign in / Sign up

Export Citation Format

Share Document